Abstract:
Concentration of a smoke emanating from a combustion engine is determined by projecting beams of light on the flow of smoke in directions traversing the flow of smoke, detecting intensities of beams of light which have traversed the flow of smoke with a light receiving device and calculating a cross-sectional image of the flow of smoke based on detection signals issued by the light receiving device.
Abstract:
Measurements of physical attributes such as dielectric film thickness that are susceptible to spectral analysis are accomplished rapidly and accurately by a spectrophotometric system in which a programmed digital computer operating concurrently with the optical scanning means automatically performs the calibrating, normalizing and data reducing functions that otherwise must be carried out as time-consuming human, mechanical or analog electronic operations. The control over the optical data handling operations exercised by the computer eliminates the need for mechanically or electronically adjusting the optical apparatus to meet changing system conditions, whether periodic or aperiodic. Source light is transmitted through a rotating variable-wavelength interference filter which acts during one-half of its cycle to transmit light of varying wavelength through a fiber-optic reference path directly to the optical data acquisition apparatus, while acting in the next half-cycle to transmit light of such varying wavelength indirectly to said data acquisition apparatus through a measurement path. In the present example, where film thickness is the attribute being measured, the measurement path comprises a bifurcated fiber-optic bundle, one branch of which is used to carry the light of variable wavelength to the sample, and the other branch of which carries light reflected from the sample to the aforesaid data acquisition apparatus. A computer program enables light passed through the reference path in one half-cyle to calibrate the system for measuring optical transmission or reflectance in the next half-cycle. Reduction of relative reflectance data to absolute reflectance data (needed for the accurate determination of film thickness) is accomplished by additional computer programs whose algorithms are based upon the discovery that all graphs of absolute reflectance versus wavelength for film samples of a given material having different thicknesses are bounded by a common pair of wave envelopes.
Abstract:
PROBLEM TO BE SOLVED: To provide a mammography apparatus capable of lessening an impact on the accuracy of interior information due to differences in shapes or sizes of a breast.SOLUTION: A mammography apparatus 1 for illuminating the breast B of a subject A with light, and acquires information of the interior of the breast B by detecting diffuse light, includes a container 3 surrounding the breast B, and a plurality of optical fibers 11 attached toward the inner side of the container 3 and carrying out illumination and detection of the light. The container 3 includes a base member 30 having an opening 30a, a plurality of ring-shaped members 40 communicating with the opening 30a and positioned in series, and a bottom part member 50 positioned on the inner side of the ring-shaped member 40 the furthest from the base member 30. Each ring-shaped member 40 and the bottom part member 50 are configured to be relatively displaceable in the communication direction of either the ring-shaped member 40 adjacent to the base member 30 side or the base member 30. At least part of the plurality of the optical fibers 11 are attached to the plurality of the ring-shaped members 40.