Abstract:
Regarding an optical pulse reshaping device of CPF type, there are subjects to reduce the number of stages by enhancing a compression efficiency as extremely higher for one stage of the CPF with maintaining a quality of an output pulse as high, and to be able to improve a degree of multiplexing by obtaining an output pulse having a Gaussian function for both of a time waveform therefor and a frequency waveform therefor. Byusing a normal dispersion HNLF in place of a zero dispersion HNLF which configures the conventional CPF, it becomes able to overcome the above mentioned subjects. Moreover, it becomes able to reduce the number of fusion splice for a fiber, and to reduce a propagation loss of the CPF, by enhancing the compression efficiency as higher.
Abstract:
The present invention relates to a light source apparatus having a structure for stably supplying broadband pulsed light having a wavelength spectrum with an excellent flatness over a wide band. The light source apparatus employs, as a seed light source, a short-pulsed light source having such an excellent output pulse characteristic that the frequency bandwidth extending until the output pulse drops by 10 dB or 20 dB from a peak is 5 THz or more. The light source apparatus also includes a broadband light producing fiber having an optical characteristic suitable for combining with the short-pulsed light source. The broadband light producing fiber inputs pulsed light from the pulsed light source, and produces the broadband pulsed light by utilizing a nonlinear optical phenomenon. This structure yields broadband pulsed light having such a wavelength spectrum that a region whose power fluctuation is suppressed to 6 dB or less extends over 100 nm or more.
Abstract:
Th end face (7a) of an optical fiber (7) and the end face (8a) of an optical fiber (8) are disposed in a V-groove (23) in a base (21) opposite to each other and a specified distance apart. A solution (27) serving as the material of a photonic crystal and containing fine particles is dripped into a space (25) defined by the end face (7a), the end face (8a) and the V-groove (23). Accordingly, a photonic crystals are respectively grown from the end face (7a) and the end face (8a) to thereby form optical control units containing photonic crystals (2) at the end face (7a) and the end face (8a) respectively.
Abstract:
An optical waveguide (11) includes a region (22) which, after electrical poling of a guiding region (16), maintains an internal electric field induced by the poling potential. The internal electric field may arise from charge separation between regions (18, 20) induced by an adjacent poling electrode (12A), and region (22) acts to inhibit decay of the space charge and to increase the lifetime of the induced electro-optic effect. The waveguide may comprise a twin hole optical fiber (11) with internal electrodes (12A, 14A), where the region (22) comprises a borosilicate layer concentrically disposed about one of the electrodes.
Abstract:
A method of thermally poling a silica based waveguide (12) comprises exposing a region of the waveguide (12) to an electric field (for example, via capillary electrodes (22, 24) inserted into holes in the waveguide); directing a laser beam (18) into the region exposed to the electric field to effect localised heating of the region via direct absorption; and scanning the laser beam (18) over the region at a rate selected to avoid heating of the region above the glass transition temperature. Reversing the electric field while scanning the laser beam (18) allows the formation of periodic poled gratings. The waveguide (12) can comprise an optical fibre.
Abstract:
An optical waveguide (11) includes a region (22) which, after electrical poling of a guiding region (16), maintains an internal electric field induced by the poling potential. The internal electric field may arise from charge separation between regions (18, 20) induced by an adjacent poling electrode (12A), and region (22) acts to inhibit decay of the space charge and to increase the lifetime of the induced electro-optic effect. The waveguide may comprise a twin hole optical fiber (11) with internal electrodes (12A, 14A), where the region (22) comprises a borosilicate layer concentrically disposed about one of the electrodes.
Abstract:
An image projection system for a colour display device, comprising:a light source (32) including, a substrate (74), a first set of LEDs (72) disposed on the substrate for generating first light having first wavelength, a second set of LEDs (72) co-disposed on the substrate for generating second light having a second wavelength, and a second set of LEDs (72) co-disposed on the substrate for generating second light having a second wavelength, the first, second, and third wavelengths being different wavelengths; a light guide (38) including a first set of optical fibres (76) optically coupled to the first set of LEDs to propagate the first light to a first imaging device (44), a second set of optical fibres (76) optically coupled to the second set of LEDs to propagate the second light to a second imaging device (44), and a third set of optical fibres (76) optically coupled to the third set of LEDs to propagate the third light to a third imaging device (44); a display controller (56) adapted to receive colour image data from a data source (58) and convert the colour image to at least first, second and third colour data for driving the respective first, second and third imaging devices to project respective first, second and third images; and a combiner (46) adapted for receiving simultaneously the first, second and third images from the respective first, second and third imaging devices, and combining the first, second and third images to form a composite image.
Abstract:
Apparatus for providing timing jitter tolerant optical modulation of a first signal (1) by a second signal (2), the first signal having a first wavelength (3), the second signal comprising a plurality of second signal pulses (4) having a second pulse shape (5) and a second wavelength (6), and the apparatus comprising a first signal input port (8), a second signal input port (9), a coupler (10), a grating (11) and a non-linear optical device (12), the apparatus being configured to direct the second signal (2) at the second signal input port (9) to the non-linear optical device (12) via the coupler (10) and the grating (11), and to direct the first signal (1) at the first signal input port (8) to the non-linear optical device (12); the grating (11) being a superstructured fibre Bragg grating that converts the second signal pulses (4) into intermediary pulses (13) each having an intermediary pulse shape (14); the intermediary pulse shape (14) being such that it provides a switching window (19) within the non-linear optical device (12).