Abstract:
A method of thermally poling a silica based waveguide (12) comprises exposing a region of the waveguide (12) to an electric field (for example, via capillary electrodes (22, 24) inserted into holes in the waveguide); directing a laser beam (18) into the region exposed to the electric field to effect localised heating of the region via direct absorption; and scanning the laser beam (18) over the region at a rate selected to avoid heating of the region above the glass transition temperature. Reversing the electric field while scanning the laser beam (18) allows the formation of periodic poled gratings. The waveguide (12) can comprise an optical fibre.
Abstract:
A single longitudinal mode narrow linewidth and low threshold all fibre laser arrangement is disclosed, constructed from a ring cavity, a gain portion in the ring cavity, an input-output coupling interposed within the cavity and pumping means connected to the ring cavity and to the grating such that, upon actuation of the pumping means, the arrangement acts as a laser.
Abstract:
A method of processing an optical device incorporating a waveguide, the method comprising the step of utilizing a laser to heat a surface of the device to alter an optical characteristic of the waveguide, wherein the power density of the laser is selected to effect ablation.
Abstract:
An optical waveguide (1) has a grating structure (2) in which gratings of different orders are superimposed. When first and second order gratings are superimposed, input light is partially reflected by the first order component and partially coupled out of the waveguide by the second order component. The second order component can also be used to couple external light into the waveguide (1). The grating structure (2) has applications to free space couplers, optical sensors, and suppression of ripples in dispersion compensators.
Abstract:
An optical fibre being optically transmissive at a predetermined wavelength of light lambda and comprising a plurality of coaxial layers. Each layer having an optical path length that varies radially, the coaxial layers being arranged to give the fibre a refractive index profile which, in use, causes sufficient Fresnel diffraction of the light such that it is guided in the fibre. The refractive index of a cladding region (60) is intermittently suppressed by controlling heating of the preform tube, thus forming a chirped saw-tooth profile (70). The optical fibre may include a lens. In this case, each of the layers has an optical path length that increases gradually outwardly by substantially n x lambda /2 (n: integer).
Abstract:
A waveguide having photosensitive properties is disclosed comprising: a waveguide substrate (2); a first cladding layer formed on the waveguide substrate; a UV absorbing layer (9) formed on the first cladding layer; a UV sensitive layer (4) having optical transmission properties adapted to be changed with UV irradiation, the layer formed on or closely adjacent the UV absorbing layer; and a second cladding layer, being substantially UV transparent, on the UV sensitive layer. Preferably, there is further provided a third cladding layer intermediate of the UV absorbing layer and the UV sensitive layer. The UV absorbing layer comprises a germanosilicate material. The absorbing layer can be adapted to change a physical property upon UV absorption. The UV absorbing layer can be variable thickness, the thickness being in accordance with predetermined requirements.
Abstract:
A grating structure is written in a photosensitive waveguide (17) by dividing a coherent beam (10) into at least three beams (12, 13, 14), and interfering them at the waveguide (17). The beams may comprise a zero order beam (12) and two first order beams (13, 14) diffracted by a phase mask (11), and their relative phases and amplitudes may be modulated to control and/or tune the grating period and shape. The method allows grating structures to be written in which a first order grating and a second order grating are superimposed.
Abstract:
This invention relates to a method of preparing a preform for an optical fibre, and more particularly to a method of preparing a preform for a polymer holey optical fibre. The invention provides a method of preparing a preform for manufacture of a polymer holey optical fibre comprising casting a preform body in a mould from a suitable material, said mould including at least one protrusion adapted to form a corresponding hole within the preform, and subsequently separating the preform body and mould. The invention also provides a method of preparing a preform for manufacture of a polymeric holey optical fibre comprising separately casting one or more elements of a preform in respective mould(s) from a suitable material, and separating said elements from said respective mould(s) and combining said elements to construct a preform having a plurality of holes therein, each hole being formed in an element or formed by the combination of two or more elements.
Abstract:
A method of thermally poling a silica based waveguide (12) comprises exposing a region of the waveguide (12) to an electric field (for example, via capillary electrodes (22, 24) inserted into holes in the waveguide); directing a laser beam (18) into the region exposed to the electric field to effect localised heating of the region via direct absorption; and scanning the laser beam (18) over the region at a rate selected to avoid heating of the region above the glass transition temperature. Reversing the electric field while scanning the laser beam (18) allows the formation of periodic poled gratings. The waveguide (12) can comprise an optical fibre.
Abstract:
A method of creating an optical structure within a photosensitive light transmissive material comprising the steps of: (a) exposing a selected region of the material to radiation at a wavelength selected to effect a refractive index change in the material; (b) terminating the exposure to the radiation at a selected fluence; and afterwards (c) exposing at least one portion of the selected region to UV radiation at a level sufficient to vary the refractive index of the material within the selected region to form the optical structure; wherein the fluence is selected such that the optical structure is substantially thermally stable without a requirement for post-processing annealing.