Abstract:
A method of generating a film during a chemical vapor deposition process is disclosed. One embodiment includes generating a first electrical pulse having a first pulse amplitude; using the first electrical pulse to generate a first density of radicalized species; disassociating a feedstock gas using the radicalized species in the first density of radicalized species, thereby creating a first deposition material; depositing the first deposition material on a substrate; generating a second electrical pulse having a second pulse amplitude, wherein the second pulse amplitude is different from the first pulse width; using the second electrical pulse to generate a second density of radicalized species; disassociating a feedstock gas using the radicalized species in the second density of radicalized species, thereby creating a second deposition material; and depositing the second plurality of deposition materials on the first deposition material.
Abstract:
A method of forming a metal oxide film in accordance with plasma CVD process, comprising performing glow discharge in a low output region so as to carry out reaction wherein the main reactant is an organometal, and thereafter performing glow discharge in a high output region so as to carry out reaction between the organometal and an oxidative gas, thereby obtaining a plastic substrate and, sequentially superimposed on the surface thereof, an organic layer and a metal oxide film. This method enables forming a thin film of excellent adherence, softness and flexibility on the surface of a substrate such as a plastic in accordance with plasma CVD process.
Abstract:
A method and apparatus for producing a distributed plasma at atmospheric pressure. A distributed plasma can be produced at atmospheric pressure by using an inexpensive high frequency power source in communication with a waveguide having a plurality particularly configured couplers disposed therein. The plurality of particularly arranged couplers can be configured in the waveguide to enhance the electromagnetic field strength therein. The plurality of couplers have internal portions disposed inside the waveguide and spaced apart by a distance of 1/4 wavelength of the high frequency power source and external portions disposed outside the waveguide and spaced apart by a predetermined distance which is calculated to cause the electromagnetic fields in the external portions of adjacent couplers to couple and thereby further enhance the strength of the electromagnetic field in the waveguide. Plasma can be formed in plasma areas defined by gaps between electrodes disposed on the external portions.
Abstract:
A high-frequency heating device including: a solid-state oscillator that generates a microwave; an amplifier that amplifies the microwave generated by the solid-state oscillator; an isolator that is connected to a stage subsequent to the amplifier, and blocks a reflected wave directed from an object exposed with the microwave; an antenna that irradiates the microwave toward the object; and a metal cavity that traps therein the microwave irradiated to the object.
Abstract:
A solid state microwave generator energized phased antenna (10) array is utilized as the excitation source for material/plasma processes. Each antenna element (10) of the array is driven by a separate solid state microwave power source. Very close and precise control of each solid state generator's phase and amplitude is provided to control the amplitude of the composite power node, and electromagnetic field distribution produced by the array which control is not readily possible with vacuum tube devices and systems such as microwave oven magnetrons. Utilizing the concepts of the invention the total power generated by the system may be easily controlled. The phase of the individual elements may be used to control the location of the power node of the plasma within a reaction chamber (12) and to move said power node within the chamber (12) with no mechanical movement or physical alteration of the processing apparatus. Because of the degree of control possible within the overall processes system of the invention plasma processing methods may be performed which were not previously practical because a high power density plasma can be concentrated at any desired location in the reaction chamber (12) or scanned across a desired region. These control features are lacking in currently available vacuum tube microwave devices. It is also probable that the overall cost of such a solid state based microwave power generators systems will be far less than that of comparable tube type microwave generators especially as fabrication and control technology progresses.
Abstract:
A solid state microwave generator is utilized as an excitation source for material/plasma processes. The invention provides very close precise control of the solid state device's power levels to control the ultimate power output and frequency which contol is not readily possible with vacuum tube devices. Utilizing the concepts of the invention the total power generated by the system may be easily varied and, further, the power may be easily monitored and used to control other device parameters such as frequency and the like. Because of the degree of control possible within the overall processs system of the invention any measurable physical property of the process such as temperature, power, color (e.g., optical pyrometer), or the like that can be monitored and converted to a control signal can be utililzed by the present system to carefully control the overall process conditions. These control features are lacking in currently available vacuum tube microwave devices. It is also probable that the overall cost of the solid state based microwave power generators systems will be far less than that of comparable tube type microwave generators.
Abstract:
Embodiments include a modular high-frequency emission source. In an embodiment, the modular high-frequency emission source includes a plurality of high-frequency emission modules, where each high-frequency emission module comprises and oscillator module, an amplification module, and an applicator. In an embodiment the oscillator module comprises a voltage control circuit and a voltage controlled oscillator. In an embodiment, the amplification module is coupled to the oscillator module. In an embodiment, the applicator is coupled to the amplification module. In an embodiment, each high-frequency emission module includes a different oscillator module.
Abstract:
A plasma processing apparatus includes: a processing container; a substrate holder disposed within the processing container and configured to hold a substrate thereon; a dielectric window disposed below the substrate holder; and a plurality of phased array antennas disposed below the dielectric window and configured to irradiate a plurality of electromagnetic waves.
Abstract:
Aspects of the present disclosure involve a plasma reactor system that includes a gas-flow-engineered reactor to more efficiently produce fixed nitrogen products. In some instances, the gas-flow-engineered reactor may include a gas vortex-inducing input mechanism and/or a quenching mechanism integrated or otherwise associated with the plasma reactor system.