Abstract:
An ultrasonic spray coating method of producing a transparent and conductive film, comprising (a) operating an ultrasonic spray device to form aerosol droplets of a first dispersion comprising a first conducting nano filaments in a first liquid; (b) forming aerosol droplets of a second dispersion comprising a graphene material in a second liquid; (c) depositing the aerosol droplets of a first dispersion and the aerosol droplets of a second dispersion onto a supporting substrate; and (d) removing the first liquid and the second liquid from the droplets to form the film, which is composed of the first conducting nano filaments and the graphene material having a nano filament-to-graphene weight ratio of from 1/99 to 99/1, wherein the film exhibits an optical transparence no less than 80% and sheet resistance no higher than 300 ohm/square.
Abstract:
Substrates such as fabrics are treated in an apparatus that includes a chemical transfer apparatus and a transport means which conducts the substrate past the chemical transfer apparatus. The chemical transfer apparatus applies a solid chemical treatment mixture to the substrate continuously as the substrate is transported past the chemical transfer apparatus. The chemical treatment mixture includes a monomer that is cured by free radical polymerization. The applied chemical treatment mixture is then cured on the substrate by free radical polymerization. This invention provides a dry alternative to conventional wet coating methods, and avoids many of the problems associated with wet coating methods.
Abstract:
A thermal barrier coating that includes a YAG-based ceramic is prepared by a solution precursor plasma spray method that includes injecting a precursor solution into a thermal jet, evaporating solvent from the precursor solution droplets, and pyrolyzing the resulting solid to form a YAG-based ceramic that is melted and deposited on a substrate. The thermal barrier coating can include through coating-thickness cracks that improve the strain tolerance of the coating.
Abstract:
The invention relates to a powder supplying device for a powder coating installation (1) with at least one powder container (24), which has a powder chamber (22) for coating powder, and with at least one powder injector (4), which is connected or can be connected to a powder discharge channel opening out via a powder discharge opening (36) in the powder chamber (22), in order to suck coating powder out of the powder chamber (22) in the powder coating operation of the powder coating installation with the aid of conveying compressed air fed by the powder injector (4). In order to make it possible for the powder to be changed quickly in an easy manner, it is provided according to the invention that the powder discharge channel has a reduced length of at most 300 mm, preferably a length of 160 mm to 240 mm and more preferably a length of 200 mm.
Abstract:
The present invention provides a system for producing coatings on a substrate from a liquid feedstock. The system comprises an axial injection thermal spray torch and a liquid feedstock delivery means for delivering a controlled flow of liquid feedstock to the torch. The torch is provided with a convergent/divergent nozzle.
Abstract:
It has been surprisingly found that injecting ceria-based particles (mean size less than 200nm) suspended in a combustible organic solvent into a plume having a maximum temperature between about 2,600°C and 4,000°C to impart a mean temperature to the particles from about 2,600°C to about 3,800°C, and to accelerate the particles to a mean velocity between about 600 to 1000 m/s, produces a thin, uniform, dense, crack-free, nanocrystalline ceria-based coating, which may be applied on porous cermet or metal substrate, for example. The physical environment of a high-velocity oxy-fuel (HVOF) thermal spraying gun suitably deployed using standard fuels produces these conditions. The method of the present invention is particularly useful for the cost-effective fabrication of ceria-containing electrolytes for solid oxide fuel cells (SOFCs).
Abstract translation:已经令人惊奇地发现,将悬浮在可燃有机溶剂中的二氧化铈基颗粒(平均尺寸小于200nm)注入到最高温度在约2600℃和4,000℃之间的羽流中,以使颗粒的平均温度从约 2600°C至约3800°C,并将颗粒加速至约600至1000 m / s之间的平均速度,产生薄而均匀,致密,无裂纹的纳米晶体二氧化铈基涂层,其可应用于 多孔金属陶瓷或金属基材。 使用标准燃料适当部署的高速氧燃料(HVOF)热喷枪的物理环境产生这些条件。 本发明的方法对于用于固体氧化物燃料电池(SOFC)的含铈铈的电解质的成本有效的制造特别有用。
Abstract:
A coating includes a porous a first layer comprising metal coated solid lubricant particles partially fused together. A second layer comprising a metal or a composite that conforms to the surface topography of the first layer.
Abstract:
A method and apparatus for making an optical fiber preform, including injecting a plasma gas source into the first end of a tubular member; generating a ring plasma flame with the plasma gas source flowing through a plasma gas feeder nozzle, the plasma gas feeder nozzle including: an inner tube, an outer tube, wherein the plasma gas source is injected between the inner tube and the outer tube to produce the ring plasma flame, such that at least a portion of the ring plasma flame is directed radially toward the inner surface of the tubular member; traversing the tubular member along the longitudinal axis relative to the plasma flame; depositing at least one soot layer on the interior surface of the tubular member by introducing reagent chemicals into the plasma flame; and fusing all of the soot layers into a glass material on the interior surface of the tubular member.
Abstract:
A method for forming an acetabular shell includes providing a working surface such as a mandrel, and spraying the working surface with a first layer of material having a first composition such as aluminum oxide. After a suitable thickness is generated, the spray composition is gradually changed to other compositions having desired particle sizes and distribution. In one example, the composition is changed to a mixture of aluminum oxide and titanium oxide and/or titanium. As thickness builds up, the relative amount of aluminum oxide is decreased such that the composition is all titanium and titanium oxide. After a desired thickness is generated, the acetabular shell is extracted off the mandrel.
Abstract:
A plasma spray process for structuring self-cleaning glass surfaces and self-cleaning glass surfaces formed according to the process. Molten or heat softened particles of inorganic material are plasma spray deposited onto the surface of a substrate to create a micro-rough surface. If desired, a hydrophobic top coating layer can optionally be applied to the micro-rough surface. The micro-structured surface formed according to the invention is durable and self-cleaning.