Abstract:
Semiconductor packages and fan out die stacking processes are described. In an embodiment, a package includes a first level die and a row of conductive pillars protruding from a front side of the first level die. A second level active die is attached to the front side of the first level die, and a redistribution layer (RDL) is formed on an in electrical contact with the row of conductive pillars and a front side of the second level active die.
Abstract:
In some embodiments, a method and/or a system may include an integrated circuit. The integrated circuit may include a semiconductor die. The integrated circuit may include a plurality of wiring layers. At least one metal-insulator-metal (MIM) capacitor may be formed within the plurality of wiring layers. The integrated circuit may include a circuit. The circuit may include at least an inductor and a voltage regulator which, with the MIM capacitor, forms a voltage regulator for the semiconductor die. The circuit may be coupled substantially below at least a portion of the MIM capacitor in the plurality of layers. The circuit may be electrically coupled to the capacitor through the plurality of wiring layers. The integrated circuit may include a plurality of electrical connectors, the plurality of electrical connectors coupled to the second surface at points separate from an area of the second surface that is occupied by the circuit.
Abstract:
A sensor includes a sensor array formed on a first side of a substrate and at least one circuit operative to communicate with the sensor array formed on a second side of the substrate. At least one via extends through the substrate to electrically connect the sensor array to the at least one circuit. Placing the at least one circuit on the second side of the substrate allows the sensor array to occupy substantially all of the first side of the substrate.
Abstract:
Packages and methods of formation are described. In an embodiment, a system in package (SiP) includes first and second redistribution layers (RDLs), stacked die between the first and second RDLs, and conductive pillars extending between the RDLs. A molding compound may encapsulate the stacked die and conductive pillars between the first and second RDLs.
Abstract:
A semiconductor package includes a processor die (e.g., an SoC) and one or more memory die (e.g., DRAM) coupled to a ball grid array (BGA) substrate. The processor die and the memory die are coupled to opposite sides of the BGA substrate using terminals (e.g., solder balls). The package may be coupled to a printed circuit board (PCB) using one or more terminals positioned around the perimeter of the processor die. The PCB may include a recess with at least part of the processor die being positioned in the recess. Positioning at least part of the processor die in the recess reduces the overall height of the semiconductor package assembly. A voltage regulator may also be coupled to the BGA substrate on the same side as the processor die with at least part of the voltage regulator being positioned in the recess a few millimeters from the processor die.
Abstract:
In some embodiments, a semiconductor device package assembly may include a first substrate. The semiconductor device package assembly may include a first die electrically connected to the first substrate such that the first die is directly bonded to the first substrate. The semiconductor device package assembly may include a second substrate directly bonded to a surface of the first die. The semiconductor device package assembly may include an electronic memory module. The electronic memory module may be directly bonded to the second substrate. The semiconductor device package assembly may include a thermally conductive material directly applied to the electronic memory module. The semiconductor device package assembly may include a heat spreader directly bonded to the thermally conductive material. The heat spreader may function to transfer heat from the first die and the electronic memory module through the heat spreader from the first side to the second side.
Abstract:
A sensor includes a sensor array formed on a first side of a substrate and at least one circuit operative to communicate with the sensor array formed on a second side of the substrate. At least one via extends through the substrate to electrically connect the sensor array to the at least one circuit. Placing the at least one circuit on the second side of the substrate allows the sensor array to occupy substantially all of the first side of the substrate.
Abstract:
A bottom package for a PoP (package-on-package) may be formed with a reinforcement layer supporting a thin or coreless substrate. The reinforcement layer may provide stiffness and rigidity to the substrate to increase the stiffness and rigidity of the bottom package and provide better handling of the substrate. The reinforcement layer may be formed using core material, a laminate layer, and a metal layer. The substrate may be formed on the reinforcement layer. The reinforcement layer may include an opening sized to accommodate a die. The die may be coupled to an exposed surface of the substrate in the opening. Metal filled vias through the reinforcement layer may be used to couple the substrate to a top package.
Abstract:
A PoP (package-on-package) package includes a bottom package coupled to a top package. Terminals on the top of the bottom package are coupled to terminals on the bottom of the top package with an electrically insulating material located between the upper surface of the bottom package and the lower surface of the top package. The bottom package and the top package are coupled during a process that applies force to bring the packages together while heating the packages.
Abstract:
A PoP (package-on-package) package includes a bottom package coupled to a top package. Terminals on the top of the bottom package are coupled to terminals on the bottom of the top package with an electrically insulating material located between the upper surface of the bottom package and the lower surface of the top package. The bottom package and the top package are coupled during a process that applies force to bring the packages together while heating the packages.