Abstract:
Kaolin clays are conditioned for the removal of colored titaniferous impurities by (A) first mixing the kaolin clay with a collector to condition the impurities, in the absence of a dispersant, but in the presence of sufficient water to yield a mixture having a solids content of at least 65 percent by weight and (B) then deflocculating the kaolin clay mixture at a pH of at least 4.0 with a dispersant in amounts sufficient to yield a kaolin clay slurry which is suitable for subsequent processing to remove colored titaniferous impurities.
Abstract:
An improved flotation process for removal of colored titaniferous impurities from kaolin clay uses as collector a hydroxamate compound, or a mixture of compounds, having the formula ##STR1## in which R is an alkyl, aryl, or alkylaryl group having 4-28, and preferably 6-24 carbon atoms, and M represents an alkali metal, an alkaline earth metal or hydrogen. The process does not require the use of activators to make the collector adsorb selectively on the colored impurities.
Abstract:
A method for separating inorganic gangues from coal particulates dispersed in a coal refuse slurry comprises the selective flocculation of the coal refuse slurry by initially adding an anionic dispersant followed subsequently by adding an anionic flocculant, allowing the flocculating coal slurry obtained to settle and collecting a concentrated settled coal slurry having a lowered ash value. The dispersed inorganic gangues may be recovered by the addition of a cationic flocculant/coagulant with subsequent recycle of the aqueous phase.
Abstract:
A method for removing inorganic sulfides from finely ground, non-sulfide minerals is provided. A polymeric agent having a molecular weight of from about 1,000 to about 300,000 and with a plurality of xanthate groups per molecule is admixed into an aqueous suspension including inorganic sulfides and non-sulfide minerals. The polymeric agent adsorbs onto the inorganic sulfides and maintains them as a dispersion while the remaining minerals are selectively separated, as by flocculation.
Abstract:
A process for the upgrading of aluminum mineral bearing raw materials by using at least three beneficiation treatment stages consisting of dispersion of a pulp of the material in specific pH ranges, screening in specific mesh sizes, and using at least one stage of high intensity magnetic separation.
Abstract:
A process for the upgrading of aluminum mineral bearing raw materials by using at least three beneficiation treatment stages consisting of dispersion of a pulp of the material in specific pH ranges, screening in specific mesh sizes, and using at least one stage of high intensity magnetic separation.
Abstract:
A composition consisting of carbon powder, water and a dispersing agent. The particle size of the carbon powder is less than 100 .mu.m, preferably less than 40 .mu.m. The composition is obtained by preparing a mixture of about 1-20% by weight, preferably about 10% by weight, of carbonaceous powder, water and 0.02-4% by weight of dispersing agent. The dispersing agent is selected preferably from polyelectrolytes, such as alkali metal and ammonium salts of polycarboxylic acids, and polyphosphates. These substances possess the property of charging the powder particles of carbon and the impurity particles in a different degree. This different charging is utilized to separate impurity particles from carbon particles, whereupon the purified composition is suitably dehydrated to attain an increased carbon powder concentration of, for instance, 50-80% by weight.
Abstract:
A method of concentrating and recovering spodumene from an aqueous pulp or slurry by conditioning the pulp with an aliphatic primary beta-amine having from seven to 15 carbon atoms (preferably as a soluble acid salt), subjecting to flotation at a pH of about 8-10 to float off the impurities, and recovering the spodumene concentrate as residue.