Abstract:
At least a two stage chlorination system for the production of aluminum trichloride and aluminum monochloride wherein in the gas stream containing the highest percentages of aluminum chloride produced CO.sub.2 is present and the said gas stream is passed through a charcoal or devolatilized coke bed in a preferred temperature range of about 1000.degree. C. to 1600.degree. C. to convert the said CO.sub.2 to CO and cycling at least part of the said CO produced to at least the second chlorination stage.
Abstract:
In the production of aluminum monochloride from alumina, bauxites and clays wherein the produced aluminum monochloride gas stream contains at least CO.sub.2 and Cl.sub.2 and this gas stream is initially passed through at least one bed of reducing agent selected from the group consisting of charcoal and devolatilized coke to convert the CO.sub.2 to CO; subsequently the gas stream now containing at least AlCl, CO and Cl.sub.2 is contacted with molten aluminum metal to convert the Cl.sub.2 to AlCl to produce a gas stream of which the major components are AlCl and CO substantially free of CO.sub.2 and Cl.sub.2.
Abstract:
A process for the concentration by flotation of gold, gold bearing minerals and uranium oxide minerals from ores and metallurgical plant products whereby a pulp of a ground ore is agitation conditioned in at least two agitation conditioning stages wherein in at least one stage the pH of the pulp is lowered with an acid agent to within the pH range of about 1.5 to 5.0, and wherein in at least one additional agitation conditioning stage the pH of the pulp is raised to within the pH range of about 6.0 to 11.0 and wherein in at least the last stage prior to flotation at least one collector selected from the group of sulfhydryl anionic collectors is present, and subsequently, the at least two stage agitation conditoned pulp is subjected to flotation to produce a flotation concentrate enriched in at least one of the mineral values from the group consisting of gold, gold bearing minerals and uranium minerals.
Abstract:
A ophthalmic surgical console system reduces kinking or flow restrictions in the tubing/cables attached to a ophthalmic surgical console by rotatably mounting the head of the surgical console to the base of the surgical console. The screen on which surgical parameter outputs are displayed and control inputs are made is attached to the ophthalmic surgical console using a movable adjustable arm.
Abstract:
A tray support arm assembly provides for the positioning of a tray and an attached movable arm in a substantially horizontal orientation with respect to the console portion of a machine for use and a substantially vertical orientation with respect to the console portion of a machine for storage. The tray support arm assembly includes a lockable tray rotation joint, a lockable wrist joint, a lower arm assembly, a lockable elbow joint, an upper assembly and a lockable shoulder joint.
Abstract:
A ophthalmic surgical console system reduces kinking or flow restrictions in the tubing/cables attached to a ophthalmic surgical console by rotatably mounting the head of the surgical console to the base of the surgical console. The screen on which surgical parameter outputs are displayed and control inputs are made is attached to the ophthalmic surgical console using a movable adjustable arm.
Abstract:
Embodiments of the invention provide a cannula having a body with a first outer diameter, a proximal end, a distal end, a lumen extending between the proximal and distal ends, and a portion outward of the first outer diameter having a second outer diameter greater than the first outer diameter that is adapted to space tissue from the fluid inlet to maintain fluid flow. Such a cannula is particularly useful for cardiopulmonary bypass procedures using a kinetically assisted venous drainage system.
Abstract:
The invention is primarily directed to the production of a substantially iron free alumina-silica product and substantially iron free aluminum chloride from bauxites, bauxitic clays and kaolinitic clays wherein the feed material to an agglomeration stage is selected to contain a minimum of about 20% kaolinite mineral. The agglomerates are so formed to produce a product that is preferably at least minus 6 mesh plus 200 mesh and in a subsequent calcination stage the calcined agglomerates have a bulk density of preferably 0.8 to 1.3. In a subsequent differential iron chlorination stage a substantially iron free alumina-silica product is produced and in a subsequent mass chlorination stage substantially iron free aluminum chloride is produced.