Abstract:
Methods for sintering aluminum powder comprise providing aluminum powder and heating the aluminum powder in a nitrogen atmosphere containing a partial pressure of water vapor in the range of about 0.001 kPa to about 0.020 kPa to sinter the aluminum powder to a transverse rupture strength of at least about 13.8 MPa. The aluminum powder is not pressed together by a mechanical force that substantially deforms particles of said aluminum powder either prior to or during the step of heating. Articles comprising sintered aluminum powder. The sintered aluminum powder has a transverse rupture strength of at least about 13.8 MPa. The microstructure of the sintered aluminum powder contains no compositional concentration gradients indicative of the use of a sintering aid and no evidence of particle deformation having occurred by an application of a mechanical force prior to or during the sintering of the aluminum powder.
Abstract:
Provide a method and apparatus for producing, in an economical manner, metal powder offering high purity and comprising uniform particle shape and size. Produce metal powder of titanium metal, etc., using an apparatus that comprises a power supply for high-voltage/current discharge, a feeder of metal electrode made of titanium metal, etc., a high-voltage discharge generator equipped with a metal electrode made of titanium, etc., and its counter electrode, a water tank, a water inlet, an outlet for produced metal dispersion solution containing titanium metal, etc., a discharge pump, and an adjunct device for separating/recovering metal powder of titanium metal, etc., from the metal dispersion solution containing titanium metal, etc.
Abstract:
A process for adjusting the level of water or water soluble additives in aqueous-based powder injection molding compounds for the purpose of recycling scrap material, controlling shrinkage or rehydrating dry feedstock. Depending on the objective, the process may require material granulation equipment, equipment for the addition or removal of water and mixing equipment. The molding compounds may be comprised of either recycled scrap material before being heat-treated or dry, virgin feedstock material.
Abstract:
A method for producing a metal structure comprising the following steps: providing a metal-coated polymer substrate; heating the metal-coated polymer substrate in a hot zone, in which a temperature of at least 600null C. prevails and in which an atmosphere essentially composed of water vapor or of a mixture of water vapor and neutral gas is maintained, so as to remove the polymer substrate and form a metal structure; and cooling the metal structure in a cooling zone.
Abstract:
The invention concerns a method of improving the properties of a hydrogen storage alloy powder for a negative electrode of a rechargeable nickel hydride battery. The method comprises the steps of hydriding a powdered alloy starting material, oxidising the obtained hydride alloy powder and washing the oxidised powder. The invention also concerns the obtained powder.
Abstract:
The invention concerns a process for the preparation of soft magnetic composite products comprising the steps of providing particles of an iron based soft magnetic material with an electrically insulating layer; optionally mixing the dry powder with a lubricant; compacting the powder and heating the obtained component at an elevated temperature in the presence of water vapour. The invention also comprises the iron powder compact subjected to this treatment.
Abstract:
The present invention concerns a method of preparing PM products by high velocity compaction of iron or iron-based powers having irregular powder particles.
Abstract:
An interconnector for a solid oxide fuel cell is manufactured by single-press compacting a powder blend to form a green interconnector with a desired shape of a final interconnector. The powder blend includes chromium and iron, and may include an organic lubricant. At least 50 wt% or more of an iron portion of the powder blend comprises iron particles smaller than 45 urn. The green interconnector is then sintered and oxidized to form the final interconnector. The oxidation step occurs in a continuous flow furnace in which a controlled atmosphere (e.g., humidified air) is fed into the furnace in the travel direction of the interconnector. The final interconnector comprises at least 90 wt% chromium, at least 3 wt% iron, and less than 0.2 wt% nitrogen. An average density within a flow field of the final interconnector may be less than 6.75 g/cc.