Abstract:
A motor powered scooter for supporting a standing rider has an improved torsion acting shock absorbing mount for the cantilevered shock absorbing support of at least one of the scooter wheels from the frame. At least one torsion acting shock absorber is utilized. In a preferred embodiment, the torsion acting shock absorber includes a square sectioned metal tube, a correspondingly square sectioned metal shaft, and confined compressible rubber rods acting there between. The torsion acting shock absorber is attached at right angles to the main structural tube and protrudes at an end to one side of the main structural tube. A cantilevered wheel support is mounted offset from the main structural tube at the end of the shock absorber remote from the main structural tube. A shock absorbing suspension is disclosed for both the front steered wheel and the rear driven wheel.
Abstract:
A rear suspension road bicycle frame uses an integrated rear shock absorbing assembly installed in a typical diamond bicycle frame with a head tube, down tube, top tube, seat tube, tubular chainstays, tubular seat stays, brake bridge at the top of said seat stays connecting them, the shock absorbing assembly having an elastomer shock absorbing spring member with a slide affixed to the brake bridge, and a sliding bearing in the upper wishbone so that the preloaded spring member absorbs shock and the frame absorbs flexing tending to unload the spring member.
Abstract:
A wheel support portion for a bicycle, such as a front fork assembly, arranged to reduce vibrations that originate at the bicycle wheel and are transmitted to the rider of the bicycle through the wheel support. Desirably, the front fork assembly is configured to be supported by a bicycle frame and includes a pair of fork legs, which extend in a downward direction along opposing sides of a front wheel of the bicycle. Preferably, the fork legs are configured to support the front wheel at their lower ends. An intermediate portion of each of the fork legs defines a cavity. A damping member comprised of a vibration damping material is positioned within the cavity. Preferably, the cavity passes completely through each fork leg in a lateral direction and the damping member is retained within the cavity by a friction fit therebetween.
Abstract:
A shock absorbing bicycle wheel hub apparatus uses an open ended, cylindrical shock absorber housing mounted concentrically within a wheel hub. The wheel hub is adapted for rotation about the shock absorber housing. A pivot tube is axially aligned with the shock absorber housing and rotationally mounted within its sidewall. Terminal ends of the pivot rod engage cover plates fixedly mounted thereon. A pressure tube is axially aligned with the shock absorber housing and extends through it so that its terminal ends may be fixed in the cover plates. A shock-absorbing medium is compressively positioned between the pressure tube and an interior surface of the shock absorber housing. The cover plates engage a bicycle fork so that weight supported by the bicycle fork is transmitted through the cover plates and the pivot tube and pressure tube, to the shock absorbing medium, and thereby, through the shock absorber housing and the wheel hub to a wheel of the bicycle. Likewise, road shocks are transmitted through the shock-absorbing medium in the same way.
Abstract:
A shock absorbing bicycle wheel hub apparatus uses an open ended, cylindrical shock absorber housing mounted concentrically within a wheel hub. The wheel hub is adapted for rotation about the shock absorber housing. A pivot tube is axially aligned with the shock absorber housing and rotationally mounted within its sidewall. Terminal ends of the pivot rod engage cover plates fixedly mounted thereon. A pressure tube is axially aligned with the shock absorber housing and extends through it so that its terminal ends may be fixed in the cover plates. A shock-absorbing medium is compressively positioned between the pressure tube and an interior surface of the shock absorber housing. The cover plates engage a bicycle fork so that weight supported by the bicycle fork is transmitted through the cover plates and the pivot tube and pressure tube, to the shock absorbing medium, and thereby, through the shock absorber housing and the wheel hub to a wheel of the bicycle. Likewise, road shocks are transmitted through the shock-absorbing medium in the same way.
Abstract:
A shock-absorbing apparatus for use in the body frames of light-weight pedal-powered or motor-powered land or water surface vehicles and sports and exercising equipment including bicycles, mountain bikes, dirt bikes, off-road bikes, all terrain bikes, exercise bikes, motor-bikes, motorcycles, mopeds, scooters, snow-scooters, snow-mobiles, jet-skis and the like. The shock-absorbing apparatus comprises a telescoping assembly including a tube and a compression rod slidably engaged coaxially, and a compression elastomer assembly including resilient and deformable compression elastomers and rigid multi-function sleeves. The elastomers are placed coaxially between the tube and the compression rod, and interconnected by the sleeves. Each multi-function sleeve has a cylindrical sidewall defining a hollow chamber for interconnecting through press-fit engagement the elastomers in a stacked series and regulating the elastomers to prevent them from twisting or snaking when they are compressed. Each multi-function sleeve further has an integral internal structure for preventing relative movement along the coaxial direction between the sleeve and adjacent elastomers.
Abstract:
A shock-absorbing apparatus for use in the body frames of light-weight pedal-powered or motor-powered land or water surface vehicles and sports and exercising equipment including bicycles, mountain bikes, dirt bikes, off-road bikes, all terrain bikes, exercise bikes, motor-bikes, motorcycles, mopeds, scooters, snow-scooters, snow-mobiles, jet-skis and the like. The shock-absorbing apparatus comprises a telescoping assembly including a tube and a compression rod slidably engaged coaxially, and a compression elastomer assembly including an elongated resilient and deformable compression elastomer and rigid multi-function bands. The elastomer is placed coaxially between the tube and the compression rod. Each multi-function band has a cylindrical sidewall defining a hollow chamber for fitting onto the elongated elastomer through press-fit engagement and regulating the elastomer to prevent it from twisting or snaking when it is compressed. The number, position and size of the multi-function bands can be changed to modify and adjust the compression characteristic of the elongated elastomer.
Abstract:
This invention relates to a front wheel resilient suspension system for a chainless bicycle where a horizontal bar member extends between a main bar member located under the bicycle seat to a horizontal bar connector mechanism which is resiliently mounted to both the horizontal bar member and the handlebar of the chainless bicycle. A buckle mechanism located on the horizontal bar member allows for pivotal displacement of the handlebar with respect to the bicycle seat and provides for a responsive displacement of the center of gravity of a bicycle rider on rough terrain which adds to the cushioning effect and the comfort of the bicycle rider.
Abstract:
A rear wheel supporting system for a motorcycle wherein an end portion of a rear axle--which is supported by the rear end portions of a rear fork--on the side opposite to the side where a rear wheel driving means is disposed, is supported so as to be movable resiliently in the longitudinal direction of the vehicle body.