Abstract:
A vehicle for flying and having a forward portion and a rearward portion opposite the forward. The vehicle includes a first pair of wings arranged at the forward portion of the vehicle, a second pair of wings arranged at the rearward portion of the vehicle, and a support structure. The support structure is connected to the forward pair of wings and connected to the rearward pair of wings, the support structure being arranged to drive the forward pair of wings alternately toward each other and apart and drives the second pair of wings alternately toward each other and apart.
Abstract:
A biomimetic pitching and flapping mechanism including a support member, at least two blade joints for holding blades and operatively connected to the support member. An outer shaft member is concentric with the support member, and an inner shaft member is concentric with the outer shaft member. The mechanism allows the blades of a small-scale rotor to be actuated in the flap and pitch degrees of freedom. The pitching and the flapping are completely independent from and uncoupled to each other. As such, the rotor can independently flap, or independently pitch, or flap and pitch simultaneously with different amplitudes and/or frequencies. The mechanism can also be used in a non-rotary wing configuration, such as an ornithopter, in which case the rotational degree of freedom would be suppressed.
Abstract:
On a main body portion of a fluttering apparatus, a wing (left wing) is formed which has a front wing shaft, a rear wing shaft and a wing film provided spreading over the front and rear wing shafts. Further, on the main body portion, a rotary actuator for driving the front wing shaft and a rotary actuator for driving the rear wing shaft are mounted. The front (rear) wing shafts reciprocate in a plane orthogonally crossing an axis of rotation with the actuator serving as the fulcrum. Thus, a moving apparatus is obtained which has superior maneuverability and can move not hindered by any obstacle or geometry both indoors and outdoors.
Abstract:
A resonant wingbeat tuning circuit automatically tunes the frequency of an actuating input to the resonant frequency of a flexible wing structure. Through the use of feedback control, the circuit produces the maximum flapping amplitude of a mechanical ornithoptic system, tracking the resonant frequency of the vibratory flapping apparatus as it varies in response to change in flight condition, ambient pressure, or incurred wing damage.
Abstract:
A resonant wingbeat tuning circuit automatically tunes the frequency of an actuating input to the resonant frequency of a flexible wing structure. Through the use of feedback control, the circuit produces the maximum flapping amplitude of a mechanical ornithoptic system, tracking the resonant frequency of the vibratory flapping apparatus as it varies in response to changes in flight condition, ambient pressure, or incurred wing damage.
Abstract:
A compressed air engine and a flying object using the engine are disclosed. The flying object includes the following elements. That is, the compressed air engine includes: a top member 11 provided with an air inlet 16; an upper cylinder 12; a lower cylinder 13; a bottom member 14; an air pipe, for passing of a compressed air; a shuttle 20 for performing up/down movements within a cylinder formed by the upper and lower cylinders; and a pair of pistons 21a and 21b over and under the shuttle respectively. The pair of the wings are symmetrically and pivotally assembled to the shuttle and the lower cylinder through securing shafts so as to perform up/down movements in accordance with the up/down movements of the shuttle. A compressed air container 2 is assembled to the bottom of the bottom member, for storing the compressed air.
Abstract:
PROBLEM TO BE SOLVED: To provide a group robot system capable of efficiently obtaining detailed entire information on an object. SOLUTION: The group robot system contains a plurality of sensing robots CS and a base station BS101 controlling them and performs a hierarchical communication comprising a plurality of hierarchies between a plurality of the sensing robots CS, working the base station BS 101 as the utmost hierarchy. If the sensing robot CS30 detects the object, the base station BS101 controls the sensing robots CS other than the sensing robots CS, which relay communications between the sensing robot CS30, other sensing robots CS performing a follow-up search to the object, and the sensing robot CS30 and the base station BS101 to move outside the current search area. COPYRIGHT: (C)2004,JPO&NCIPI