Abstract:
PROBLEM TO BE SOLVED: To provide a most favorable lift selection method of a lift device furnished with at least two lift, groups. SOLUTION: This most favorable lift selection method of the lift device furnished with at least the two lift groups is related with a method that routes (W1;..., Wn) accompanied by changeovers (U1, U2, U3) to reach a destination floor (Z) from a departing floor (S) can be used, the routes are divided into various stretches (W1T1,..., W1Tn, WnT1,..., WnTn) and a lift of the one group of the lift groups (GR) is allotted to each of the stretches (W1T1,..., W1Tn, WnT1,..., WnTn). Under this method, it is possible to provide a means of settling a multi-route problem in destination call multi-group control especially accompanied by journeys with the changeovers concerned. COPYRIGHT: (C)2003,JPO
Abstract:
A method for operating an elevator installation includes receiving a destination call of a passenger at a control unit and selecting an elevator car from a set of available elevator cars for transporting the passenger. The elevator car is selected such that elevator car spacing rules are observed. The method further includes determining an arrival time of the selected elevator car at the boarding floor, and determining a first arrival time of the passenger at an elevator landing corresponding to the selected elevator car on the boarding floor. The method includes directing, under the proviso that the first arrival time of the passenger at the elevator landing precedes the arrival time of the selected elevator car by a defined margin, the passenger to a waiting zone of a set of available waiting zones. The waiting zone is selected such that waiting zone spacing rules are observed.
Abstract:
An passenger conveyance system includes a depth-sensing sensor within a passenger conveyance enclosure for capturing depth map data of objects within a field of view that includes a passenger conveyance door. A processing module is in communication with the depth-sensing sensor to receive the depth map data, the processing module uses the depth map data to track an object and calculate passenger data associated with the tracked object. a passenger conveyance controller receives the passenger data from the processing module to control operation of a passenger conveyance door in response to the passenger data.
Abstract:
An elevator swing operation system for use in a building includes a plurality of floors with landings that are grouped into zones. The elevator cars are allocated to service the zones with a default allocation setup or configuration. The allocation of elevator cars to zones can be modified by moving an elevator car from one zone to another in response to a maximum estimated time to arrival being exceeded and a maximum number of elevator cars allowed to change zones not being exceeded. Furthermore, the default configuration or allocation can be restored when the system is in swing operation, an elevator car is parked, and a minimum time for receiving no calls has been exceeded.
Abstract:
When a specific destination floor call is made, the control unit assigns an elevator of which waiting time is within the reference time from the plurality of elevators to the specific destination floor call, the waiting time being a time from a time when the specific destination floor call is made to a time when the specific user can get on an elevator at the specific floor. Further, when a general destination floor call is made, the control unit assigns one of the plurality of elevators in response to the general destination floor call such that an elevator of which waiting time to the specific destination floor call that is made after the general destination floor call is within the reference time is left.
Abstract:
A method of controlling an elevator installation with several elevator cages per elevator shaft, wherein a destination call to a desired destination story is actuated on a call input story by at least one passenger and at least one most favorable call allocation for transport of the passenger by the elevator cage from a start story to a destination story, is determined for the destination call by at least one destination call control. If at least one disadvantage parameter is set, at least one disadvantage-free call allocation for transport of the passenger by the elevator cage from a start story to a destination story is determined by the destination call control, in which it is possible the start story and call input story or the destination story and desired destination correspond.
Abstract:
A double-deck elevator group controller including a hall-installed car call registration device, cars of the first operation mode which are in charge of operation between even-numbered floors or between odd-numbered floors and cars of the second operation mode which serve all of the floors at which the cars can stop, are set, and in consideration of both combinations of boarding and alighting floors of registered from-hall car calls and an increment of the number of stops, the from-hall car calls are divided for assignment to the cars of the first operation mode and the cars of the second operation, whereby it is possible to meet from-hall car calls having arbitrary floors as the boarding and alighting floors and it is possible to improve the operation efficiency.