Abstract:
The present invention provides a process comprising reacting polyisocyanate with active hydrogen-containing compound in the presence of Z-1,1,1,4,4,4-hexafluoro-2-butene at a temperature of at least 135° F. (57.2° C.) or a temperature of 135° F. (57.2° C.) to 150° F. (65.6° C.) to obtain as a result thereof, foamed reaction product, wherein the thermal conductivity of the foamed reaction product exhibits no appreciable change at any of the foaming temperatures within this range.
Abstract:
Foams for filling cavities and crevasses and for forming foamed products are provided. The latex foam may include an A-side containing a functionalized latex and a B-side that contains a crosslinking agent and optionally a non-functionalized latex. The A- and/or B-side contain a blowing agent package or components forming the blowing agent package. The blowing agent package may be the combination of two or more chemicals that when mixed together form a gas or a chemical compound that, when activated by heat or light, forms a gas. In an alternate embodiment, the latex foam includes a functionalized latex, an acid, and an encapsulated crosslinking agent and base. Alternatively, the spray latex foam may include a functionalized latex, a crosslinking agent, and an encapsulated dry acid and dry base. The encapsulating agent may be a protective, non-reactive shell that can be broken or melted at the time of application.
Abstract:
Polyurethane foams having a polymeric foam structure including a plurality of closed cells therein; and an HFO or HCFO blowing agent, including HCFO-1233zd or HFO-1234ze. In certain aspects, foam premixes, and the resulting foam structures, that include HFCO-1233zd as blowing agent used alone, or in certain aspects, in blend with a co-blowing agent such as methyl formate are disclosed.
Abstract:
The present invention provides a kind of inherent flame retardant rigid polyurethane foam. The production formula comprises 100 to 105 pbw of polyether polyol and reactive phosphorus-containing flame retardant, 2.5 to 3.5 pbw of amine catalyst, 0.8 to 2.5 pbw of tertiary amine catalyst, 0.8 to 2.5 pbw of foam stabilizer, 0.5 to 1.5 pbw of blowing agent, 135 to 150 pbw of isocyanates, and 0.05 to 0.1 pbw of organo-metallic catalyst, wherein the reactive phosphorus-containing flame retardant is 9,10-dihydro-9-oxa-10-phosphaphenanthrene-4-hydroxybenzyl alcohol. The active monomers containing flame retarding elements are introduced into main chain and side chain of PU for modification, which permanently improves the flame retardancy of PU without obvious effect on other performance of PU matrix.
Abstract:
The invention described herein generally pertains to the use of low boiling point, low vapor pressure blowing agents with froth polyurethane or polyisocyanurate foams to fill hollow cavities (particularly window lineals) and which have lowered exotherms, which prevent deformation of the hollow cavity (e.g., window lineal) and additional achieve filling of longer lengths of window lineals by increasing the foaming and gel times of the reaction.
Abstract:
This invention relates to azeotrope-like compositions, methods and systems having utility in numerous applications, and in particular, uses for azeotrope-like compositions comprising effective amounts of the compound cis-1,1,1,4,4,4-hexafluoro-2-butene (Z-HFO-1336mzzm), which has the following structure: and another material selected from the group consisting of water, fluoroketones, alcohols, hydrochlorofluoroolefins, and combinations of two or more thereof. These compositions may be used in a wide variety of applications such as, blowing agents, refrigerants, heating agents, power cycle agents, cleaning agents, aerosol propellants, sterilization agents, lubricants, flavor and fragrance extractants, flammability reducing agents, and flame suppression agents.
Abstract:
The present invention relates to a composition suitable for production of rigid polyurethane or polyisocyanurate foams, said composition comprising at least one isocyanate component, at least one polyol component, at least one foam stabilizer, at least one urethane and/or isocyanurate catalyst, optionally water and/or blowing agent, and optionally at least one flame retardant and/or further additives, which comprises at least two different varieties 1 and 2 of polyether siloxanes as foam stabilizers, and to the use of this composition for production of foamed polyurethane or polyisocyanurate materials, preferably rigid foams.
Abstract:
A polyurethane foam, polyisocyanurate foam or polyurea foam is obtainable from the reaction of a mixture comprising A) a compound reactive towards isocyanate (“NCO-reactive compound”); B) a blowing agent selected from the group comprising linear, branched or cyclic C1 to C6 hydrocarbons, linear,branched or cyclic C1 to C6 fluorocarbons, N2, O2, argon and/or CO2, where the blowing agent B) is present in the supercritical or near-critical state; C) a polyisocyanate; D) an amphiphilic isocyanate; and E) optionally a surfactant and F) optionally other auxiliaries and additives. The invention further relates to the production of this polyurethane foam, where the blowing agent is emulsified in the isocyanate component containing amphiphilic isocyanate.
Abstract:
Methods and combinations for making and using one or more cellular foam layers comprising flexible cellular foam and wood particles having aromatic properties, where said cellular foam layers may be located on, under, or in cushioning foams and mattresses, or placed between on, under, within, or between other layering substrates. The foam containing aromatic wood particles may be used in mattresses, pillows, bedding products, medical cushioning foams, pet beds, outdoor bedding pads, outdoor pillows, and other cushioning products.
Abstract:
The present invention relates to polyester polyols made from aromatic polyacid sources such as thermoplastic polyesters. The polyols can be made by heating a thermoplastic polyester such as virgin polyethylene terephthalate, recycled polyethylene terephthalate, or mixtures thereof, with a glycol to give a digested intermediate which is then reacted with a digestible polymer, which can be obtained from various recycle waste streams. The polyester polyols comprise a glycol-digested polyacid source and a further digestible polymer. The polyester polyols provide a sustainable alternative to petrochemical or biochemical based polyester polyols.