Abstract:
The invention relates to a multilayered material sheet comprising a consolidated stack of unidirectional monolayers of drawn ultra high molecular weight polyolefine. The draw direction of two subsequent monolayers in the stack differs. Moreover the thickness of at least one monolayer does not exceed 50 μm, and the strength of at least one monolayer is comprised between 1.2 GPa and 3 GPa. The invention also relates to a ballistic resistant article comprising the multilayered material sheet and to a process for the preparation of the ballistic resistant article.
Abstract:
Steel wire is coated with a metal layer such that the metal layer has a surface with roughnesses. A surface roughness Ra of above 0.25 μm is reached. Preferably, the roughnesses are randomly dispersed at the surface. The result is an improved visual aspect and an increased resistance against corrosion.
Abstract:
A coated metal reinforcement element for polymeric or elastomeric materials comprises a coating of: a polymer or prepolymer compatible with and co-polymerizable, co-vulcanizable or crosslinkable with said polymeric or elastomeric material to be reinforced, and bearing functional groups; either covalently bonding to the metal surface of said reinforcement element; or forming covalent bonds with the outward directed first functional groups of a mono-or multimolecular layer of a bifunctional adhesion promotor intercalated between said metal by its second functional groups. A method for the coating includes a one step and a two step procedure.
Abstract:
A pneumatic tire comprises a belt disposed radially outside a carcass in a tread portion, the belt comprising two cross plies of monofilament metallic cords laid at angles of from 15 to 30 degrees with respect to the circumferential direction of the tire, each monofilament cord composed of a waved single filament, the filament having a circular sectional shape having a diameter in a range of from 0.40 to 0.50 mm, or alternatively a non-circular sectional shape having an aspect ratio in a range of from 0.65 to 0.95 and a cross-sectional area in a range of 0.09 to 0.20 sq.mm.
Abstract:
A steel cord (114) comprises strength elements (100, 132) and having a length, a longitudinal central axis (112) and a cord pitch. At least one of the elements (100) has a projection on a plane YZ perpendicular to the longitudinal central axis (112). This projection takes the form of a curve with a radius of curvature which alternates between a maximum and a minimum. The curve further has a center of curvature. The radius of curvature and the center of curvature lie inside the curve so that a convex curve is obtained. The cord (114) is further characterized by one or both of following features:(i) the distance between two minimum radii of curvature of said curve measured along the longitudinal central axis (112) is different from half the cord pitch; or(ii) if all of said elements (100) provide a convex curve, at least one of said convex curves substantially differs from another convex curve.
Abstract:
A steel cord (114) comprises strength elements (100, 132) and having a length, a longitudinal central axis (112) and a cord pitch. At least one of the elements (100) has a projection on a plane YZ perpendicular to the longitudinal central axis (112). This projection takes the form of a curve with a radius of curvature which alternates between a maximum and a minimum. The curve further has a center of curvature. The radius of curvature and the center of curvature lie inside the curve so that a convex curve is obtained. The cord (114) is further characterized by one or both of following features: (i) the distance between two minimum radii of curvature of said curve measured along the longitudinal central axis (112) is different from half the cord pitch; or (ii) if all of said elements (100) provide a convex curve, at least one of said convex curves substantially differs from another convex curve.
Abstract:
Reinforcement cord for elastomeric products, in particular reinforcement cords, for use in vehicle tires comprising inner filaments (1) and at least one outer filament (2) wound helically around the inner filaments (1), characterised in that at least the outer filament (2) has a flattened cross-section and is so dimensioned and positioned that it substantially co-determines the mechanical characteristics of the reinforcement cord via line-like and/or area contact locations with the inner filaments (1).
Abstract:
A pneumatic tire reinforced by a reinforcing belt is provided, the reinforcing belt having at least one cord reinforced ply, and, in turn, the cord reinforced ply having a plurality of substantially parallel spaced apart elongated cross-section reinforcing cords. The ply may be a bias ply in which the reinforcing cords are disposed at a bias angle, or it may be an overlay ply being axially longer than any other plies and having curving ends which overlay and curve over the ends of any other plies to strengthen shoulder portions of the pneumatic tire. Preferably, in the case of an overlay ply, the reinforcing cords are disposed substantially circumferentially. Preferably also, the elongated cross-section of the reinforcing cords is elliptic; and, the reinforcing cords are thermoplastic monofilaments formed by extrusion.
Abstract:
A composite rope obtained by process comprising, impregnating a multifilament with epoxy resin and half-setting the resin to form a prepreg, twisting the plural prepregs together to form a primarily-twisted product, and wrapping the primarily-twisted product with a yarn or a porous tape. When it is wound round the primarily-twisted product, the yarn is closely wound at an angle substantially perpendicular to an axis of the primarily-twisted product. The method further comprises twisting the plural primarily-twisted products thus wrapped to form a secondarily-twisted product and then heating the secondarily-twisted product to completely set the resin impregnated.
Abstract:
A composite reinforcing rope is made of a cylindrical core of twisted filaments of aromatic polyamides around which a plurality of steel wires of a rectangular configuration are coiled. The steel wires are wound side-by-side in one layer. Each wire is twisted around its own axis to such a degree that its broader side fully engages the periphery of the polyamide core. The edges of respective wires are rounded whereby the convex narrow dides of adjoining wires contact one another substantially along a line.