Abstract:
A tubular metal body 1 comprises a tube 2 extruded through a porthole die and composed of a plurality of components 2b joined to one another with a plurality of joint portions 2a extending over the entire length of the tube. The base material metal of the extruded tube 2 in each of the joint portions 2a is subjected to a modifying treatment to produce finely divided crystal grains. The modifying treatment for the extruded tube 2 is conducted preferably by frictionally agitating each joint portion using a probe 8 of a friction agitation joining tool 6. The tubular metal body 1 is available with an increased length in a larger size and has high pressure resistance.
Abstract:
본 발명은 중간물질(medium)을 수용하는 내부탱크와, 이 내부탱크에 대해 간격을 두고 배치된 하우징과, 내부탱크와 외부 하우징 사이에 위치하는 진공 공간으로 구성되며, 진공 공간에는 적어도 하나의 영구자석이 배치되고, 이 영구자석과 마주하여 고온 초전도체가 위치하여 하우징 내에서 내부탱크가 접촉없이 설치되는 저온 중간물질의 저장과 운반을 위한 이중벽 탱크에 있어서, - 상기 고온 초전도체(8)는 상기 진공 공간(5)에 위치하며, - 상기 내부탱크(1)와 하우징(2)은 각각 경부(頸部)(3,4)를 가지고, 상기 경부(3,4)는 서로 동심을 가지도록 배치되며, - 상기 내부탱크(1)의 경부(3)는 나사선 모양의 주름 금속관(3)이며, 상기 금속관(3)의 외부단부는 하우징(2)의 경부(4)에 연결되는 것을 특징으로 하는 이중벽 탱크에 관한 것이다.
Abstract:
PURPOSE: A connection structure of a branched connector in a fuel pressure accumulator is provided to improve internal pressure fatigue strength by reducing the maximum stress value generated at the internal peripheral edge at the lower end of the branch connector as a branch pipe and a joint-fixing tool. CONSTITUTION: In a connection structure of a branched connector in a fuel pressure accumulator with inserting and joining the branch connector to a through-hole(1-2) formed on an internal peripheral wall(1-1a) of a fuel pressure accumulating container(1), the branched connector is deeply inserted into the through hole until the end of the branch connector is projected from the inner peripheral wall surface of the pressure accumulating container into the inside of the container. In addition, the branched connector includes a branch pipe(2) or a branch joint-fixing tool joining to the through-hole with being inserted into the through-hole.
Abstract in simplified Chinese:一种低温槽(1),系具备膜锚定机构(5),该膜锚定机构系将隔着隔热材(2d)设于混凝土壁(2a)之内壁面侧的膜(2b)对混凝土壁进行固定;膜锚定机构系具备按压零件(5f),该按压零件系从低温槽内侧按压膜;且该低温槽系具备介设零件(6),该介设零件系介设于膜锚定机构之按压零件与膜之间,且具有与前述按压零件进行面接触的第1抵接面、及与前述膜进行面接触的第2抵接面。
Abstract in simplified Chinese:本发明揭示用于控制在液体冲击系统中的液体冲击压力的设备、系统与方法。液体冲击系统包括至少一种气体及液体,气体具有密度(ρG)与多变指数(κ)及液体具有密度(ρL)。该方法包括借由测定系统参数Ψ来计算液体在物体上的液体冲击负荷之步骤,其中Ψ被定义成(ρG/ρL)(κ-1)/κ。该系统亦经建构以利用参数Ψ。参数Ψ可经调整以增加或减少在系统上的液体冲击负荷。可使用或运行以自动化电脑运行之系统与方法。这些方法与系统可用于诸如LNG运输与装载/卸载、燃料贮罐操作、制造过程、运载工具动态及燃烧过程及其他之应用。
Abstract in simplified Chinese:本发明系提供一种在约1035千帕(150 psia)到约7590千帕(l100psia)之压力及约-123℃(-l9O℃)到约-62℃(-80℉)的温度范围里输送加压液化天然气之管线分配网络系统。管路分配网络系统之管及其它组件系由包括含有低于9重量%镍并且抗拉强度大于830千帕(120ksi)及DBTT低于约-73℃(-100℉)之超高强度、低合金钢的材料所构成。
Abstract in simplified Chinese:本发明系关于一种将富含甲烷且压力超过约3103kPa(450psia)的气流加以液化的方法。此气流膨胀至较低压力以制得温度超过约-112℃(-170℉)、压力足以使液态产物居于或低于其起泡点之液态产物。之后,此气相和液态产物在适当的分离器中进行相分离处理,且液态产物引至于超过约-112℃(-170℉)的温度下存储的存储设备中。
Abstract:
La présente invention concerne un procédé et un système pour calculer en temps réel la durée d'autonomie d'une cuve non réfrigérée contenant du gaz naturel comprenant une couche de gaz naturel liquéfié (GNL) et une couche de gaz naturel gazeux (GNG). La présente invention concerne également un système pour calculer en temps réel, selon le procédé de l'invention, la durée d'autonomie d'une cuve non réfrigérée, ainsi qu'un véhicule comportant une cuve GN et un système selon l'invention.
Abstract:
The invention relates to a plant 100 and an apparatus 10 for the sequestration of carbon dioxide C02. The apparatus comprises a loading device 12 and a tube 14. The loading device comprises in turn a chamber 123, pressurization means 16, filling means 126 and sealing means 127. The loading device is immersed, during use, in an external low-pressure environment. Inside the loading device: the chamber is designed to be opened towards the external environment in order to receive a container at its inlet; the chamber is designed to be hermetically closed off from the low-pressure external environment; the pressurization means are designed to increase the pressure inside the chamber until a high working pressure is reached; the chamber is designed to withstand the difference between the external pressure and the internal pressure; the filling means are designed to fill the container with C02; the sealing means are designed to close the container full of C02; the chamber is designed to be opened towards the tube at the design pressure so as to release the container 30 full of C02. The invention also relates to a method for sequestration of carbon dioxide C02.
Abstract:
L'invention concerne un dispositif de vaporisation (4) pour le refroidissement d'un gaz liquéfié; ledit dispositif de vaporisation (1 ) comportant : - une enceinte de vaporisation (14) agencée dans l'espace intérieur d'un récipient (2, 19) destiné à être rempli de gaz liquéfié (3), l'enceinte de vaporisation (14) comportant des parois d'échange de chaleur (6) permettant un échange de chaleur entre un espace intérieur de l'enceinte de vaporisation (14) et un gaz liquéfié (3) présent dans l'espace intérieur du récipient (2, 19); - un circuit d'entrée (5) comportant une admission débouchant dans l'espace intérieur du récipient (2, 19) pour prélever un flux de gaz liquéfié en phase liquide dans le récipient (2, 19) et un organe de perte de charge (13) débouchant dans l'espace intérieur de l'enceinte de vaporisation (14) afin de détendre le flux de gaz prélevé; - un circuit de sortie (7) agencé pour évacuer le flux de gaz prélevé, en phase gazeuse depuis l'enceinte de vaporisation (14) vers un circuit d'utilisation de gaz en phase vapeur (8); ledit circuit de sortie (7) comportant une pompe à dépression (9) apte à aspirer le flux de gaz dans l'enceinte de vaporisation (14), à le refouler vers le circuit d'utilisation de gaz en phase vapeur (8) et à maintenir dans l'enceinte de vaporisation (14) une pression absolue inférieure à la pression atmosphérique.