Abstract:
Fluid storage tank, comprising at least one layer, wherein the at least one layer encloses at least one chamber, further comprising a valve, the valve connecting an interior of the at least one chamber with an exterior of the at least one chamber, wherein the fluid storage tank is made at least partially by means of 3D-printing.
Abstract:
A storage tank for storing compressed fluid supplied from a source, comprising: an single piece elongate extruded body having an upper surface, a lower surface and side walls connecting the upper surface and the lower surface and at least one support member extending between the upper surface and the lower surface to define a plurality of storage chambers within the elongate body; and a pair of end caps mounted to an end of the elongate body to provide communication between the plurality of storage chambers, each end cap having a plurality of sockets formed thereon, at least one of which is connectable to the source for receiving the compressed fluid for storage within the plurality of storage chambers.
Abstract:
A pressure vessel assembly includes a vessel including a wall defining a chamber and a circumferentially continuous lip projecting into the chamber from the wall. The lip defines a through-bore in fluid communication with the chamber. A nozzle assembly including a tube and a flange projecting radially outward from the tube. The tube includes a first portion projecting from the flange and through the through-bore and an opposite second portion projecting outward from the flange. The flange is in contact with the wall and the first portion includes an outer surface having a contour configured to produce sealing friction between the lip and the outer surface.
Abstract:
Liquid storage systems for space vehicles include at least one storage tank including a tank inlet, a tank outlet, and a plurality of liquid storage compartments coupled to each other in series between the tank inlet and the tank outlet. Each liquid storage compartment includes an end plate including a porous outlet at an end of the liquid storage compartment adjacent to another liquid storage compartment. Propulsion systems for space vehicles include at least one such liquid storage tank. Methods of providing a liquid propellant to a thruster of a space vehicle include withdrawing a liquid propellant from a first compartment within a tank and flowing the liquid propellant from a second compartment into the first compartment through a porous element associated with an end plate separating the first compartment from the second compartment.
Abstract:
The present disclosure relates to a liquefied gas storage tank and a marine structure including the same. The storage tank includes a plurality of liquefied gas storage tanks received in a plurality of spaces defined in a hull of the marine structure by a cofferdam and arranged in two rows. The cofferdam includes at least one longitudinal cofferdam extending in a longitudinal direction of the hull and at least one transverse cofferdam extending in a transverse direction of the hull. Each of the storage tanks is sealed and thermally insulated by a sealing wall and a thermal insulation wall extending without being disconnected. The longitudinal cofferdam supports load of an upper structure while suppressing a sloshing phenomenon.
Abstract:
Cryogenic fluid storage tank devoid of vacuum insulation and comprising a wall (3) comprising a multilayer structure comprising, from the inside of the tank (1) to the outside of the tank (1): a leaktight first layer (13) comprising one from among a resin reinforced by glass fibers and/or carbon fibers, a polymer such as polyurethane, aluminum, steel, stainless steel, a second layer (23) comprising a thickness of laminated material based on carbon fibers and/or glass fibers, a third layer (33) comprising a thickness of thermal insulation, a fourth layer (43) comprising a thickness of laminated material based on carbon fibers and/or glass fibers, the first layer (13) having a thickness of between 0.1 mm and 6 mm, the second layer (23) having a thickness of between 5 and 40 mm, the third layer (33) having a thickness of between 20 and 200 mm and the fourth layer (43) having a thickness of between 2 and 20 mm.
Abstract:
A mobile machine, in particular a counterweighted fork lift truck, has at least one pressurized tank, in particular to carry fuel that is in a gaseous state under normal conditions. The tank has an at least approximately rectangular external contour in at least one cross-sectional plane.
Abstract:
When manufacturing a low-temperature tank (1), a plurality of unit tanks (10) that are able to be connected together by mutually different objects, and that are each capable of storing low-temperature liquefied gas are manufactured in a factory that is distant from a construction site. The unit tanks (10) are then transported to the construction site, and an inner tank (2) is then assembled at the construction site by connecting together the plurality of unit tanks (10). An outer tank (3) is then formed around the inner tank (2).