Abstract:
A multichannel fluorosensor includes an optical module and an electronic module combined in a watertight housing with an underwater connector. The fluorosensor has an integral calibrator for periodical sensitivity validation of the fluorosensor. The optical module has one or several excitation channels and one or several emission channels that use a mutual focusing system. To increase efficiency, the excitation and emission channels each have a micro-collimator made with one or more ball lenses. Each excitation channel has a light emitting diode and an optical filter. Each emission channel has a photodiode with a preamplifier and an optical filter. The electronic module connects directly to the optical module and includes a lock-in amplifier, a power supply and a controller with an A/D converter and a connector. The calibrator provides a response proportional to the excitation intensity, and matches with spectral parameter of fluorescence for the analyzed fluorescent substance.
Abstract:
A device for generating a laser light beam includes a module. The module includes at least one laser light source, and a mechanical, an electrical and/or an optical interface defined towards an outside of the module.
Abstract:
Described and claimed is an interchangeable tip-open cell fluorometer comprising a housing and a fluorometric probe tip interchangeably connected to the housing, the probe tip including a probe tip housing defining an open cell and enclosing a probe optical arrangement, the probe optical arrangement including an excitation source and a fluorescence detector wherein the excitation source is aimed directly into the fluorescence detector such that a sample can be fluorometrically detected. Also claimed is a method of using this interchangeable tip-open cell fluorometer for detecting fluorescent signals emitted by one or more fluorophores from samples from a natural or industrial water system. The fluorometer, when coupled with a controller, is capable of monitoring and optionally controlling an industrial process or system.
Abstract:
A fluorescence fluctuation microscope, in which excitation light and detection light are coupled into or out of a microscope by means of a common beam path, comprises a closed loop scanning unit (22, 23).
Abstract:
The present invention relates generally to the field of biochemical laboratory. More particularly the invention relates to the improved and more efficient instrumental features of equipment used as e.g. fluorometers, photometers and luminometers. The object of the invention is achieved by providing an optical measurement instrument where there is an interface (218, 223, 233a, 233b, 238) for a changeable optical module (240), the interface being adapted for at least one excitation beam and at least two emission beams. This allows performing various types of measurements by changing an optical module. The change of module and related parameters can be performed automatically controlled by software. It is also possible to easily upgrade the instrument for new types of measurements by just providing the instrument with a new optical module and the related software.
Abstract:
The present invention relates generally to the field of biochemical laboratory. More particularly the invention relates to the improved and more efficient instrumental features of equipment used as e.g. fluorometers, photometers and luminometers. The object of the invention is achieved by providing an optical measurement instrument where there is an interface (218, 223, 233a, 233b, 238) for a changeable optical module (240), the interface being adapted for at least one excitation beam and at least two emission beams. This allows performing various types of measurements by changing an optical module. The change of module and related parameters can be performed automatically controlled by software. It is also possible to easily upgrade the instrument for new types of measurements by just providing the instrument with a new optical module and the related software.
Abstract:
The invention relates to an imaging system for optical automatic analysers, especially fluorescence readers. On the sample side, the imaging system contains a cylindrical lens array and a prism array, which is arranged upstream of the cylindrical lens array. The prismatic effect of the prisms of the prism array lies in the direction of the cylinder axes of the cylindrical lenses. Together with a telescopic imaging system, the inventive imaging system creates a number of parallel cylindrical focussing volumes between the cylindrical lens array and a detector array, these focussing volumes being slanted towards the optical axis of the telescopic system in relation to the vertical. The arrangement enables the detection of fluorescence with a large aperture in one direction, and at the same time enables depth selective analysis of the fluorescence signal, especially the discrimination of the fluorescent radiation originating from the solution above.
Abstract:
An optical analyzer measures light directed from a sample to the detector. The apparatus has an optics module which has a detector and optics for directing light emitted by the sample to the detector and which module can be positioned alternatively either so that the light is directed to the detector from above the sample or so that light is directed to the detector from below the sample. The invention is usable in particular in fluorometers and in luminometers.
Abstract:
A multiple spectral imager includes three modular imaging spectrometers, each having a respective collimator, dispersing element, and imaging system. Each collimator includes a pair of parabolic reflectors having a common focal point and an elongated slit positioned at the focal point, and each collimator defines a pupil near the respective dispersing element. The dispersing elements disperse light from various positions along the slit of the collimator into the respective imaging system, and each of the imaging systems includes an array detector that intercepts the dispersed light from the respective dispersing element and registers spectral information in a first direction and spatial information in a second direction. The spectrometers are stacked adjacent to one another, and light from a single directing mirror enters the collimators of all three of the spectrometers. The three array detectors are each responsive to a separate respective spectral region.
Abstract:
A modular optical system for a Fourier transform infrared spectrometer which has a baseplate assembly with a baseplate having a top surface and two mirrors mounted to focus at a point above the baseplate. At least two pins extend upwardly from the baseplate top surface and are fixed with respect to the foci of the mirrors. An accessory module has a flat bottomed positioning plate with portions defining pin holes to coincide with the pins of the face plate. A sample holding accessory platform extends from the positioning plate and is fixed with respect to the pin holes so that when the pin holes of the positioning plate are positioned over the pins of the baseplate and the positioning plate bottom surface is engaged with the locator pads on the baseplate, the sample is located at the foci of the mirrors. Three accessory module guides are located on the baseplate having spring-mounted retainer balls accurately spaced a common distance from the surface of the baseplate which engage beveled chamfers in the sides of the positioning plate and hold the accessory module in place. A sample to be analyzed may be placed in the accessory module and positioned in the FTIR spectrometer by hand, requiring no tools to accurately position the sample.