Abstract:
Apparatus and methods for detecting analytes in a sample are provided. The apparatus can include: one or more channels having a detection zone; one or more irradiation sources disposed for irradiating the detection zone with radiation; a detector capable of collecting at least one charge corresponding to an emission beam emitted from the detection zone, the detector having an output; and a time delay integration system coupled to the detector for effecting time delay integration of the at least one charge by accumulating the at least one charge before reading the at least one charge at the output of the detector. Various embodiments provide an apparatus with a multi-notch filter. Various embodiments provide a solid state laser, a micro-wire laser, or an organic light-emitting diode as a irradiation source.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
A sensor, such as a lateral flow sensor, which includes a chemical layer and a detector on a flexible substrate. An optical signal is produced in response to an analyte placed on the chemical layer. The detector detects the signal, to thereby detect the presence, absence or concentration of the analyte. The detector is on the substrate. The chemical layer and the substrate are laminated together, to thereby form an integrated sensor. The sensor can include a light source. The light source can be on the substrate, or on an opposite side of the chemical layer than the detector.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with excitation beams generated by a light source. The light source can include an area light array of light emitting diodes, one or more solid state lasers, one or more micro-wire lasers, or a combination thereof. According to various embodiments, a Fresnel lens can be disposed along a beam bath between the light source and the reaction regions. Methods of analysis using the optical instrument are also provided.
Abstract:
A microfabricated detection system, comprising: a substrate chip; a chamber defined by the substrate chip to which a fluid sample is in use delivered; and at least one detector comprising at least one light-emitting diode including an organic semi-conductor element for emitting light into the chamber and at least one photocell including an organic semiconductor element for receiving light from the chamber.
Abstract:
An optical sensor (10,30) uses a polymer light emitting diode (12, 31, 41, 51) to emit light detected by a polymer photodetector (13, 36, 46, 56). The polymer light emitting diode (12, 31, 41, 51) containing an indicator that reacts with an analyte and alters the light emitted by the polymer light emitting diode (12, 31, 41, 51). The change is detected by the polymer photodector (13, 36, 46, 56) and is used to detect the presence of the analyte.
Abstract:
A sensor device configured to be attached to a drug delivery device and configured to illuminate the drug delivery device when attached, the sensor device having an OLED having a transparent first electrode, a transparent second electrode and a central layer disposed between the first and second electrodes, the central layer comprising at least one organic layer, the at least one organic layer configured to emit light through the transparent first electrode, and an optical sensor arranged to receive light reflected from a surface of the drug delivery device, wherein the central layer of the OLED has a region without the at least one organic layer and wherein the optical sensor is arranged, when the sensor device is attached to the drug delivery device, to view a predetermined area of the surface of the drug delivery device through the region without the at least one organic layer.
Abstract:
An optical instrument (A) for monitoring polymerase chain reaction replication of DNA may include a thermal cycler block (1c) for holding a plurality of vials (1b), each containing a suspension of ingredients that include a fluorescent primary dye. The instrument may include a light source (11) for emitting a source beam, a first means (7) disposed to be receptive of the source beam, a primary focusing means (3) disposed to focus the excitation beam simultaneously into a plurality of suspensions and being receptive of and passing emission beams, a second means (8) disposed to be receptive of emission beams, an emission focusing means (10) for focusing emission beams, a detector, and a processing means for computing concentration of DNA. The optical system being arranged without a beam splitter (6) but with one or more folding mirrors (5), and with excitation and emission beams being on slightly different optical paths angularly.