Abstract:
A method for utilizing polarization as a scheme for fluorescence removal from UV Raman spectra collected in a standoff detection scheme has been invented. In this scheme, a linearly polarized ultraviolet (UV) laser interacts with a material on a surface or in a container. The material generates Raman scattering with polarization contributions relative to that of the laser. The material possibly fluoresces as well, but the fluorescence is generally unpolarized. By subtracting a scaled version of the perpendicular component from the parallel component of the returned signal both relative to the laser source polarization - it is possible to generate a spectrum that is fluorescence free and contains the strongest features of the Raman scattered light.
Abstract:
A method and system for measuring oxygen levels and various blood constituents utilizing a sensor having one or more light sources, and one or more light detectors is disclosed. The system is capable of using data collected by the one or more detectors from a non-monochromatic light source to provide accurate information during motion events occurring with an extremity the sensor. The system is also capable of detecting and providing an alert if the sensor is not properly placed on a patient or becomes disengaged therefrom.
Abstract:
Techniques are disclosed relating to analysis and reduction of crosstalk between signals. These techniques may be applicable in many fields, such as single-tube PCR or DNA melt analysis, PCR or melt data from neighboring wells of a multi-well plate, capillary electrophoresis data (e.g., DNA sequencing), gas chromatography, multispectral imaging, dual-color fluorescence correlation spectrometry, electrical crosstalk, etc. According to one embodiment, crosstalk between fluorescence signals from different species may be determined based on a correlation between the time derivatives of the fluorescence signals from the fluorescent species.
Abstract:
A laser ultrasound system may be utilized to test material quality. The laser ultrasound system may generate a laser for application to a material and measure signal generated by the application of the laser to the material. The measured signals may be altered based on correction factors and the quality of the material may be determined based on the altered signals.
Abstract:
Interferometric focusing (IF), rather than conventional geometric focusing, of excitation light onto a guide-star that is embedded deeply in tissue, increases its fluorescence intensity. The method can extend the depth of wavefront measurement and improve correction inside of tissues because of its ability to suppress both scattering of diffuse light and aberration of ballistic light. The results showed more than two times improvement in SNR and RMS error of the wavefront measurement. Although only ballistic light in the excitation path is corrected, the intensity after wavefront correction increased by 1.5 times. When applying IF to a two-photon microscope with a near infra-red laser, this method would further extend the measurement depth and achieve high SNR for the wavefront sensor.
Abstract:
Interferometric focusing (IF), rather than conventional geometric focusing, of excitation light onto a guide-star that is embedded deeply in tissue, increases its fluorescence intensity. The method can extend the depth of wavefront measurement and improve correction inside of tissues because of its ability to suppress both scattering of diffuse light and aberration of ballistic light. The results showed more than two times improvement in SNR and RMS error of the wavefront measurement. Although only ballistic light in the excitation path is corrected, the intensity after wavefront correction increased by 1.5 times. When applying IF to a two-photon microscope with a near infra-red laser, this method would further extend the measurement depth and achieve high SNR for the wavefront sensor.
Abstract:
L'invention concerne un procédé de commande d'un spectromètre d'analyse d'un produit, le spectromètre comprenant une source de lumière (LS) comportant plusieurs diodes électroluminescentes (LD1-LD4) ayant des spectres d'émission respectifs couvrant en combinaison une bande de longueurs d'onde d'analyse, le procédé comprenant des étapes consistant à: fournir un courant d'alimentation (I1-I4) à au moins une des diodes électroluminescentes pour l'allumer, mesurer une intensité lumineuse (LFL1- LFL4) émise par la source de lumière en mesurant un courant à une borne d'au moins une autre des diodes électroluminescentes maintenue éteinte, déterminer en fonction de chaque mesure d'intensité lumineuse, une valeur de consigne (LC1-LC4) du courant d'alimentation de chaque diode allumée, et réguler le courant d'alimentation de chaque diode allumée pour qu'il corresponde à la valeur de consigne.
Abstract:
Disclosed herein is a process and system to correct reflective distortions of an optical spectrum. In addition, a spectroscopy system that compensates for reflective distortions is disclosed.
Abstract:
An optical analysis apparatus is provided with an exchangeable probe that contains an optical fibre for performing measurements or applying treatment. The apparatus has a base unit that contains a light source and/or a light detector for supplying to the optical fibre and/or detecting light from the optical fibre. The probe contains a computer readable information providing element. Before operation the base unit reads probe dependent probe information into the base unit from the information providing element that is part of the probe and controls operation of the base unit dependent on the probe information. In one embodiment the probe information comprises (or refers to) results of calibration measurements for the probe and supply of light to the probe and/or signal processing of signals received from the probe is corrected according to the results of the calibration measurements read using the information element. In other embodiments the information is used to prevent re-use of probes that have been used in operations that can compromise sterility.
Abstract:
Systems and methods are provided for a UV-VIS spectrophotometer, such as a UV-VIS detector unit included in a high-performance liquid chromatography system. In one example, a system for the UV-VIS detector unit may include a first light source, a signal detector, a flow path positioned intermediate the first light source and the signal detector, a second light source, and a reference detector. The first light source, the signal detector, and the flow path may be aligned along a first axis, and the second light source and the reference detector may be aligned along a second axis, different than the first axis.