Abstract:
A surface mountable laser driver circuit package (405) is configured to mount on a host printed circuit board, PCB, (402). A surface mount circuit package includes a lead-frame (445). A plurality of laser driver circuit components (310, 320, 330) is mounted on and in electrical communication with the lead-frame of the surface mount circuit package. A dielectric layer (440) is located between the lead-frame and the host PCB and includes portals through the dielectric layer each arranged to accommodate an electrical connection (441, 442) between the lead-frame and the host PCB. The lead-frame and the dielectric layer are arranged such that a first lead-frame portion and a first dielectric layer portal align with a first end of a host PCB trace configured to provide a current return path for the surface mount laser driver, and a second lead-frame portion and a second dielectric layer portal align with a second end of the host PCB trace.
Abstract:
A zoom objective comprises housing lens, a first movable lens, and a first gearless motor. The first gearless motor is adapted to cause a first longitudinal movement of the first movable lens relative to the housing lens. A method of operating a zoom objective provides a first movable lens, a housing lens, and a first gearless motor. The method includes moving the first movable lens relative to the housing lens by a force generated by the first gearless motor.
Abstract:
An ignition facilitated electrodeless sealed high intensity illumination device is configured to receive a laser beam from a continuous wave (CW) laser light source. A sealed chamber is configured to contain an ionizable medium. The chamber has an ingress window disposed within a wall of a chamber interior surface configured to admit the laser beam into the chamber, a plasma sustaining region, and a high intensity light egress window configured to emit high intensity light from the chamber. The CW laser beam is producible by a CW laser below 250 Watts configured to produce a wavelength below 1100 nm. The device is configured to focus the laser beam to a full width at half maximum (FWHM) beam waist of 1-15 microns 2 and a Rayleigh length of 6 microns or less, and the plasma is configured to be ignited by the CW laser beam.
Abstract:
An apparatus and a method for operating a sealed high intensity illumination lamp configured to receive a laser beam from a laser light source. The lamp includes a sealed chamber configured to contain an ionizable medium having a plasma sustaining region, and a plasma ignition region. A high intensity light egress window emits high intensity light from the chamber. A substantially flat ingress window located within a wall of the chamber admits the laser beam into the chamber. The lamp includes means for controlled increasing and decreasing a pressure level within the sealed chamber while the lamp is producing the high intensity illumination.
Abstract:
A method and device are presented for providing patient safe light to a wound. The device includes a radiation source producing flora lethal radiation wavelengths, a radiation conduit detachably optically coupled to the radiation source, and a patch remotely located from the radiation source configured to at least partially conform to a surface contour of the wound. The patch includes a flexible panel formed of a radiation transmitting material able to withstand sterilization, including at least one surface with a disturbed surface area configured to emit radiation upon the wound.
Abstract:
A sensor assembly is disclosed that includes a hollow casing having a radiation entrance opening. A radiation-transmissive optic is at the radiation entrance opening. A substrate is inside and sealed against the hollow casing. An optical sensing element is coupled to the substrate and configured to sense radiation that has passed through the radiation-transmissive optic. A method of manufacturing the sensor assembly also is disclosed.
Abstract:
A MEMS tunable VCSEL includes a membrane device having a mirror and a distal-side electrostatic cavity for displacing the mirror to increase a size of an optical cavity. A VCSEL device includes an active region for amplifying light. One or more proximal-side electrostatic cavities are defined between the VCSEL device and the membrane device and used to displace the mirror to decrease a size of an optical cavity.
Abstract:
An illumination device for generating multiple wavelength, narrow linewidth, single longitudinal and single transversal mode emission, includes a laser-medium inside a laser-resonator configured to receive a pump beam from a single pump diode and produce a laser wave. Laser-resonator ingress and egress mirrors are configured to resonate the laser wave. An an OPO-resonator and OPO crystal are configured to receive the laser wave and produce short and long OPO waves. An OPO-resonator ingress mirror is configured to resonate the short OPO wave with the laser-resonator egress mirror. A nonlinear output crystal is configured to receive the short OPO wave and produce at least one output wave, wherein the the laser-resonator egress mirror is configured to emit at least two of the leaking out laser wave and the output waves.
Abstract:
A surface mountable laser driver circuit package (405) is configured to mount on a host printed circuit board, PCB, (402). A surface mount circuit package includes a lead-frame (445). A plurality of laser driver circuit components (310, 320, 330) is mounted on and in electrical communication with the lead-frame of the surface mount circuit package. A dielectric layer (440) is located between the lead-frame and the host PCB and includes portals through the dielectric layer each arranged to accommodate an electrical connection (441, 442) between the lead-frame and the host PCB. The lead-frame and the dielectric layer are arranged such that a first lead-frame portion and a first dielectric layer portal align with a first end of a host PCB trace configured to provide a current return path for the surface mount laser driver, and a second lead-frame portion and a second dielectric layer portal align with a second end of the host PCB trace.