Abstract:
The present invention provides for an electronic isolator device such as a universal isolator and having isolation and possible safety functionality and comprising an isolator module (550), and a base module (500), and wherein the isolator module is arranged for removable physical/electrical connection to the base module and in at least two orientations/positions relative to the base module, wherein electrical connection to the base module in each of the at least two orientations/positions serves to configure the type/functionality of the isolator device.
Abstract:
An electrical circuit for a light fixture can include a power supply that provides primary power. The electrical circuit can also include a light module having at least one first light source coupled to the power supply, where the at least one light source illuminates when the light module receives the primary power. The electrical circuit can further include an energy storage unit having at least one energy storage device, where the at least one energy storage device charges using the primary power. The at least one first light source can receive reserve power from the energy storage unit when the power supply ceases providing the primary power.
Abstract:
The disclosed concept relates to hollow core arrester membranes generally and, in particular, to membranes that include a pultruded tube composed of fibers and resin, and one or more wrap layers composed of fibers and resin in the form of a mat or fabric. The one or more wrap layers are applied to the pultruded tube to form a wrapped, pultruded tube, which is over molded with a polymer enclosure.
Abstract:
A surface mount, power inductor component assembly (100) includes only two different shapes of modular core pieces (120, 122) and a set of windings (104, 106) having the same shape that can be assembled and arranged to have any desired number of non-magnetically coupled windings to accommodate electrical power systems having different numbers of phases of electrical power. The core pieces (120, 122) and windings (104, 106) are vertically elongated to reduce the component footprint on a circuit board yet provide higher power, higher current capability.
Abstract:
An electrical chamber can include at least one wall forming a cavity, where the at least one wall includes a first end and a wall inner surface. The electrical chamber can also include a first isolation zone disposed on the inner surface at a first distance from the first end, where the first isolation zone is formed by a first proximal wall, a first distal wall, and a first isolation zone inner surface disposed between and adjacent to the first proximal wall and the first distal wall, where the first proximal wall forms a first angle with the first isolation zone inner surface, where the first distal wall forms a second angle with the first isolation zone inner surface, where the first angle is non-perpendicular. The cavity is configured to receive at least one electrical conductor. The cavity and the first isolation zone are configured to receive a potting compound.
Abstract:
Electrical current sensing and monitoring methods include connecting sensing a voltage across a conductor having a non-linear resistance such as a fuse element. The current flowing in the conductor is calculated based on at least a first detected state of the sensed voltage and a thermal equilibrium characterization of the conductor.
Abstract:
A system comprises a smart device that includes a processor and a memory. The smart device processor is configured to executed instructions stored in memory and the smart device to: wirelessly detect both the presence of a non-commissioned field-deployed product and a unique identification (ID) associated with the non-commissioned field-deployed product; take a photograph of the non-commissioned field-deployed product; obtain location data of the non-commissioned field-deployed product; and wirelessly transmit the unique ID, photograph and location data to establish a commissioned status of the non-commissioned field-deployed product.
Abstract:
A housing for a gas sensor module is described herein. The housing can include a first portion and a second portion. The first portion can include at least one wall forming a cavity having a first cavity portion and a second cavity portion. The first portion can also include an inlet tube coupling feature and a distribution channel disposed adjacent to the first cavity portion. The first portion can further include an outlet tube coupling feature and a receiving channel disposed adjacent to the second cavity portion. The second portion can include a tuning fork coupling feature disposed adjacent to the second cavity.
Abstract:
A joiner system for a channel raceway includes a joiner body with first and second posts, and a joiner wall panel separate from the joiner body. The joiner wall panel connects to the joiner body between the first and second posts to form a wall between the first and second posts. First and second connecting projections extend outward from adjacent the respective first and second posts. The first and second connecting projections are spaced apart from one another and in generally opposing relationship with respect to one another. The joiner body has a snap-fit component on the lower side of a base of the joiner body. The snap-fit component mates in a snap-fit connection with a splice plate to interconnect the joiner body and at least two pieces of channel framing.
Abstract:
A power supply and circuitry system for powering HVPT devices includes a power supply circuit that selectively provides an operating power and a simmer power to multiple HVPT devices. The system also includes a trigger circuit for each respective HVPT device that selectively couples the power supply circuit to one HVPT device to provide the operating power thereto. The system also includes a simmer control circuit for selectively coupling the power supply circuit to the HVPT devices to provide the simmer power thereto, the simmer control circuit further including a simmer switch circuit for each HVPT device, wherein each simmer switch circuit comprises an input coupled to the power supply circuit to receive the simmer power therefrom and an output coupled to one HVPT device. The simmer control circuit also further includes a simmer drive circuit coupled to each simmer switch circuit for selectively enabling the simmer switch circuits.