Abstract:
A system comprises a smart device that includes a processor and a memory. The smart device processor is configured to executed instructions stored in memory and the smart device to: wirelessly detect both the presence of a non-commissioned field-deployed product and a unique identification (ID) associated with the non-commissioned field-deployed product; take a photograph of the non-commissioned field-deployed product; obtain location data of the non-commissioned field-deployed product; and wirelessly transmit the unique ID, photograph and location data to establish a commissioned status of the non-commissioned field-deployed product.
Abstract:
Aspects and techniques of the present disclosure relate to enclosures, such as, electrical enclosures, for example, explosion-proof enclosures, and including advantageous features and methods usable with such enclosures. Disclosed features and techniques relate to: an enclosure fastening device; a visual indicator; an enclosure handling assist arrangement; a control handle; and a reset controller.
Abstract:
The present disclosure relates to a fail-safe LED system including an LED circuit arrangement. The LED circuit arrangement includes a plurality of LED strings arranged in parallel with respect to each other. The LED circuit arrangement is supplied with electrical current from a constant current power supply. The fail-safe LED system includes structure for detecting a in at least one of the LED strings a failure that causes increased current to pass through remaining operational LED strings of the plurality of LED strings. The fail-safe LED system also includes a current correction string arranged in parallel with respect to the plurality of LED strings. When activated in response to the detection of a failure, the current correction string accommodates current from the constant current power supply such that the current passing through each operational LED string is reduced to a corrected current level.
Abstract:
A system comprises an explosion proof device and an intrinsically safe device. The explosion proof device is coupled to a power supply. The intrinsically safe device includes a user interface. The explosion proof device is configured to induce inductive coupling with the intrinsically safe device. The inductive coupling between the explosion proof device and the intrinsically safe device enables the transfer of power from the explosion proof device to the user interface of the intrinsically safe device. The inductive coupling can additionally enable the transfer of data between the explosion proof device and the intrinsically safe device.
Abstract:
Aspects and techniques of the present disclosure relate to explosion-proof enclosures having light transmissive portions for allowing light to pass-therethrough and/or providing internal viewing for inspection purposes. And the explosion-proof enclosure can include at least one flame path. And the portion of the explosion-proof enclosure including a plastic construction that is light transmissive can be provided as at least part of a lighting guard.
Abstract:
A system to determine the ground impedance of a conduit system includes a conductive sheath and a resistor of known value. The conductive sheath is configured to surround a portion of a conductor housed within a conduit system. Capacitive coupling occurs between the sheath and the conductor to establish a voltage source. The resistor is electrically coupled between the voltage source and a metal component of the conduit system, and a voltage drop is read across the resistor to determine the health of the ground impedance of the conduit system.
Abstract:
A light fixture is disclosed herein. The light fixture can include a base having at least one wall that forms a cavity, where the at least one wall includes at least one lens mating surface. The light fixture can also include a lens having at least one base mating surface that forms a hermetic seal with the at least one lens mating surface, where the hermetic seal encapsulates the cavity. The light fixture can further include at least one solid state light source disposed within the cavity.
Abstract:
The present disclosure relates to an electrical protection system, including a breaker enclosure and associated terminals, and the methods of use therefor that allow for a circuit breaker or other electrical protection device to be safely added or removed from a circuit while power is supplied to at least one of the terminals. The disclosed enclosure and terminals include a series of interrelated safety features that prevent a user from accidentally completing the circuit from one terminal to another when the electrical protection system would be in an unsafe state. The combination of features described herein allow for a replaceable electrical protection device for equipment under load to be realized, thus improving user safety.
Abstract:
Safety improvements to Light Emitting Diodes (LED) are discussed herein. As the LEDs that are part of a luminaire heat up and cool down, the current supplied will be tuned to improve the safety of the luminaire to manage the levels of light and heat produced. At least one thermally active electrical component is incorporated into the LED load of the luminaire, which is communicated to an LED current control to signal when to adjust current levels providing by a driving circuit. Current is reduced when the temperature of the LED load exceeds a threshold, and or returned to an optimal current when the temperature no longer exceeds the threshold.
Abstract:
An electrical connector testing system can include a first connector end and a controller coupled to first connector end. The system can also include an electrical load coupled to the first connector end, where the electrical load includes an electrical cable and a second connector end coupled to an end of the electrical cable. The controller can determine whether an adverse electrical condition exists with respect to the electrical load before allowing power to flow between the first connector end and the second connector end.