Abstract:
Desirable composites of polysiloxane polymers and inorganic nanoparticles can be formed based on the appropriate selection of the surface properties of the particles and the chemical properties of the polymer. High loadings of particles can be achieved with good dispersion through the polymer. The composites can have good optical properties. In some embodiments, the inorganic particles are substantially free of surface modification.
Abstract:
High rate deposition methods comprise depositing a powder coating from a product flow. The product flow results from a chemical reaction within the flow. Some of the powder coatings consolidate under appropriate conditions into an optical coating. The substrate can have a first optical coating onto which the powder coating is placed. The resulting optical coating following consolidation can have a large index-of-refraction difference with the underlying first optical coating, high thickness and index-of-refraction uniformity across the substrate and high thickness and index-of-refraction uniformity between coatings formed on different substrates under equivalent conditions. In some embodiments, the deposition can result in a powder coating of at least about 100 nm in no more than about 30 minutes with a substrate having a surface area of at least about 25 square centimeters.
Abstract:
Collections of particles are described that include crystalline aluminum oxide selected from the group consisting of delta-A12O3 and theta-A12O3. The particles have an average diameter less than about 100 nm. The particles generally have correspondingly large BET surface areas. In certain embodiments, the particle collections are very uniform. In some embodiments, collections of particles include doped aluminum oxides particles with an average diameter less than about 500 nm. The collections of particles can be deposited as coatings. Methods are described for producing desired aluminum oxide particles.
Abstract:
Combinational synthesis methods obtain a plurality of compositions having materially different characteristics using an apparatus having a plurality of collectors. A first quantity of fluid reactants are reacted to form a first quantity of production composition. Following completion of the collection of the first quantity of product composition, a second quantity of fluid reactants are reacted to form a second quantity of product composition materially different from the first quantity of product composition. An apparatus includes a nozzle (130) connected to a reactant source (120) and a plurality of collectors (236). The nozzle and plurality of collectors move relative to each other such that a collector can be selectively placed to receive a fluid stream emanating from the nozzle. The plurality of product compositions can be evaluated to determine their suitability for various applications.
Abstract:
Embodiments of electrodes include a collection of particles having an average diameter less than about 100 nm and have a root mean square surface roughness less than about one micron. Electrodes can be formed with a collection of electroactive nanoparticles having a narrow particle size distribution. Electrodes can be formed having an average thickness less than about 10 microns that include particles having an average diameter less than about 100 nm. Thin electrodes can be used in the formation of thin batteries in which at least one of the electrodes includes nanoscale electroactive particles.
Abstract:
Photovoltaic modules can comprise solar cells having doped domains of opposite polarities along the rear side of the cells. The doped domains can be located within openings through a dielectric passivation layer. In some embodiments, the solar cells are formed form thin silicon foils. Doped domains can be formed by printing inks along the rear surface of the semiconducting sheets. The dopant inks can comprise nanoparticles having the desired dopant. Photovoltaic modules can be formed with a plurality of solar cells having different sized structures to improve module performance. The sized can be determined dynamically based on estimated properties of the semiconductor so that the current outputs of the cells in the module are more similar to each other. The modules can produce higher power relative to modules with similar equal sized cells that do not produce matched currents. Appropriate dynamic processing methods are described that include processing steps that provide adjustments of the processing according to the dynamic adjustments in cell designs.
Abstract:
Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
Abstract:
Inorganic particle/polymer composites are described that involve chemical bonding between the elements of the composite. In some embodiments, the composite composition includes a polymer having side groups chemically bonded to inorganic particles. Furthermore, the composite composition can include chemically bonded inorganic particles and ordered polymers. Various electrical, optical and electro-optical devices can be formed from the composites.
Abstract:
Light reactive deposition can be adapted effectively for the deposition of one or more electrochemical cell components. In particular, electrodes, electrolytes, electrical interconnects can be deposited form a reactive flow. In some embodiments, the reactive flow comprises a reactant stream that intersects a light beam to drive a reaction within a light reactive zone to produce product that is deposited on a substrate. The approach is extremely versatile for the production of a range of compositions that are useful in electrochemical cells and fuel cell, in particular. The properties of the materials, including the density and porosity can be adjusted based on the deposition properties and any subsequent processing including, for example, heat treatments.