Abstract:
A method of determining a distance estimate between a mobile device and a wireless transceiver communicating with the mobile device on at least one multi- carrier signal includes: receiving at least one multi-carrier signal; selecting at least one carrier signal from the at least one multi-carrier signal; measuring a signal characteristic of the at least one carrier signal from the at least one multi-carrier signal; and determining the distance estimate between the mobile device and the wireless transceiver based at least partially upon the signal characteristic.
Abstract:
Techniques for performing admission control based on quality-of-service (QoS) performance in a wireless communication network are described. QoS performance (e.g., delay or throughput performance) of admitted data flows may be determined. Whether to admit or reject a new data flow may then be determined based on the QoS performance of the admitted data flows. The admitted and new data flows may have delay bounds. The QoS performance of the admitted data flows may be given by a measured sector delay, which may be determined based on actual delays of packets. A measured flow delay for each admitted data flow may be determined based on delays of packets for that flow. The measured sector delay may then be determined based on the measured flow delays for all admitted data flows. The new data flow may be admitted if the measured sector delay is less than a delay threshold.
Abstract:
Systems and methods for bundling signals in a wireless communication system are disclosed. A connection request and a reservation for QoS resources can be bundled into an access message at an access terminal. The access message with the bundled communication signals can then be transmitted to an access network. An application layer (e.g., a DataOverSignaling (DOS)) message can also be bundled with the connection request and the reservation into the access message.
Abstract:
A mobile wireless device may dynamically alter a downlink MIMO function byswitching it on and off, or switching between different downlink MIMO configurations, such as 2xMIMO and 4xMIMO. Still further, a mobile device having greater than two antennas may dynamically select a subset of the antennas to be used to receive a MIMO transmission, and further, enable a mobile device to request a subset of antennas at a base station to be used for the MIMO transmission. This dynamic control of the MIMO mode or configuration may be achieved by using implicit signaling, by way of an enlarged code word set in CQI feedback transmissions, or by using explicit signaling, by way of E-DPCCH orders. In this way, a MIMO-capable mobile device may dynamically be configured for downlink MIMO transmissions as the conditions demand, enabling MIMO to be switched off when its use might otherwise cause performance to suffer.
Abstract:
A method for providing multiple-user multiple-input and multiple-output in a high-speed packet access system is described. A channel quality indicator is received from a dual-stream-capable wireless communication device requesting a single-stream transmission at a first data rate. The first data rate is adjusted by an adaptive outer loop margin to obtain a second data rate. A data stream is transmitted to the wireless communication device using the second data rate. A positive-acknowledgement/negative-acknowledgement (ACK/NACK) is received from the wireless communication device. The adaptive outer loop margin is adjusted according to the received ACK/NACK.
Abstract:
Systems and methods to configure and schedule asymmetric carriers on an uplink between communication devices are described herein. An access node is provided to reserve a common-channel-free carrier for communication with an access terminal. The access node may reserve the carrier for communication with the access terminal based on path loss data between the access node and the access terminal. Further, an adaptive rise-over-thermal (RoT) target may be employed for communication over any carrier.
Abstract:
Techniques for controlling transmission of packets on multiple links are described. In one design, a transmitter may generate packets of data for a receiver, assign the packets with sequence numbers from a single sequence number space, demultiplex the packets into multiple streams for multiple links, and send each stream of packets os the associated link to the receiver. The receiver may receive some packets in error, and the correctly received packets may be out of order. In one design, the receiver may maintain the largest sequence number of correctly received packets for each link. After detecting at least one missing packet, the receiver may send status information conveying the missing packet(s) and the largest sequence numbers for all links to the transmitter. The transmitter may use the largest sequence numbers for all links and its packet-to-link mapping to determine whether to quickly resend each missing packet or wait.
Abstract:
Methods and apparatuses for facilitating managing cells in a multi-carrier system from an access terminal and base station are provided. The base station and access terminal communicate via an anchor carrier and a supplementary carrier. A triggering algorithm generated by the base station is transmitted to the access terminal. The triggering algorithm includes instructions for the access terminal to report downlink measurements as a function of trigger events detected over the anchor carrier and/or the supplementary carrier. Downlink measurements taken by the access terminal are provided to the base station. Cell management instructions based in part on the downlink measurements are then provided to the access terminal by the base station.
Abstract:
Techniques for managing operation of a user equipment (UE) in a multi-carrier system are described. The system may support two or more carriers on the downlink and one or more carriers on the uplink. One carrier on each link may be designated as an anchor carrier. In an aspect, a lower layer order (e.g., an HS-SCCH order) may be used to transition the UE between single-carrier and multi-carrier operation. In another aspect, the UE may have the same discontinuous reception (DRX) configuration for all downlink carriers and/or the same discontinuous transmission (DTX) configuration for all uplink carriers. In yet another aspect, HS-SCCH-less operation may be restricted to the anchor carrier.
Abstract:
Embodiments disclosed herein relate to methods and systems for providing adaptive server selection in wireless communications. An access terminal may be configured to determine a forward link quality metric associated with each of a plurality of sectors serviced by a plurality of access points; assign credits to each sector in relation to the forward link quality metric; and change a data source control (DSC) value if the credits accumulated for a non-serving sector at a DSC change boundary is greater than a predetermined threshold, where the non-serving sector and the serving sector for the access terminal belong to different cells. The access terminal may be further configured to change a data rate control (DRC) cover in accordance with the DSC change. The use of DSC may provide an early indication of handoff, thereby allowing the service outage associated with server switching to be substantially reduced.