Abstract:
A system, method, and apparatus for providing venue-cast service in a wireless access network are disclosed. A local transmitter can request reservation of air link resources on the wireless access network for a venue-cast transmission. The local transmitter can receive a forward link signal with a timing reference for data transmitted on the wireless access network such as, for example, the forward link signal in an EV-DO network or a FLO-based media distribution system. Based on the timing reference, the local transmitter can transmit venue-cast information in a same frequency band as the forward link signal utilizing the reserved air link resources. Optionally, the venue-cast system can include a collocated network repeater and the local transmitter can synchronize its timing and transmit power to the forward link signal from the repeater.
Abstract:
This disclosure describes techniques for scheduling distribution of content (10) to a plurality of devices (8) in a communication network, such as a cellular-based (4) wireless network. According to this disclosure, two or more distribution techniques may be used, and scheduling techniques are performed to determine which distribution technique to use for different content. For example, content can be broadcast to all devices on the network (broadcast), multicast within several cells of the network (multi-cell multicast), multicast in a specific cell of the network (single cell multicast), or unicast to one or more specific devices (8U) within specific cells (4D) of the network (umcact). The scheduling techniques described in this disclosure may improve content distribution by substantially maximizing the number of content requests that are satisfied, particularly when bandwidth is limited.
Abstract:
This disclosure describes techniques for scheduling distribution of content to a plurality of devices in a communication network, such as a cellular-based wireless network. According to this disclosure, two or more distribution techniques may be used, and scheduling techniques are performed to determine which distribution technique to use for different content. For example, content can be broadcast to all devices on the network (broadcast), multicast within several cells of the network (multi-cell multicast), multicast in a specific cell of the network (single cell multicast), or unicast to one or more specific devices within specific cells of the network (unicast). The scheduling techniques described in this disclosure may improve content distribution by substantially maximizing the number of content requests that are satisfied, particularly when bandwidth is limited.
Abstract:
Embodiments disclosed herein relate to methods and systems for providing adaptive server selection in wireless communications. An access terminal may be configured to determine a forward link quality metric associated with each of a plurality of sectors serviced by a plurality of access points; assign credits to each sector in relation to the forward link quality metric; and change a data source control (DSC) value if the credits accumulated for a non-serving sector at a DSC change boundary is greater than a predetermined threshold, where the non-serving sector and the serving sector for the access terminal belong to different cells. The access terminal may be further configured to change a data rate control (DRC) cover in accordance with the DSC change. The use of DSC may provide an early indication of handoff, thereby allowing the service outage associated with server switching to be substantially reduced.
Abstract:
Embodiments disclosed herein relate to methods and systems for providing adaptive server selection in wireless communications. An access terminal may be configured to determine a forward link quality metric associated with each of a plurality of sectors serviced by a plurality of access points; assign credits to each sector in relation to the forward link quality metric; and change a data source control (DSC) value if the credits accumulated for a non-serving sector at a DSC change boundary is greater than a predetermined threshold, where the non-serving sector and the serving sector for the access terminal belong to different cells. The access terminal may be further configured to change a data rate control (DRC) cover in accordance with the DSC change. The use of DSC may provide an early indication of handoff, thereby allowing the service outage associated with server switching to be substantially reduced.
Abstract:
Apparatus and methods for controlling antenna down tilt in a mixed coordinated/non-coordinated network include receiving one or more input signals defining a waveform to be transmitted, for determining a tilt angle state to be applied to the antenna based on the one or more input signals, and for transmitting a tilt control signal if the determined tilt angle state differs from a current tilt angle state associated with the antenna.