Abstract:
A method and a device are provided for determining an overrun condition of a vehicle, in particular a commercial vehicle, including a control unit that determines the overrun condition. The control unit is suitable for determining a probable occurrence of at least one overrun condition, at least in accordance with altitude or height profile data of a route that is and/or will be traveled by the vehicle. A navigation system, that is suitable for determining at least height profile data of a route that is traveled or will be traveled by a vehicle, is used in order to allow the determination of a probable occurrence of at least one overrun condition of the vehicle in accordance with the height profile data. Synchronization of an air supply operation during the overrun condition is hence possible.
Abstract:
A method for controlling the speed of a vehicle, the method making it possible to maintain a predefined setpoint speed even on downhill grades. In the event that the actual speed of the vehicle exceeds the predefined setpoint speed by more than a first predefined speed difference, a service brake of the vehicle will be activated.
Abstract:
Brake controller for controlling the brakes of a towed vehicle is provided. The controller includes microprocessor, an accelerometer, a storage array for storing a sequence of signals, and associated software for computing a moving average of accelerometer values thereby providing data on which the braking requirements of the towed vehicle can be determined. Feedback based on the power consumed during the braking event is likewise utilized to modify the power delivered to the braking system during subsequent braking events.
Abstract:
A method for controlling a drive system and/or a wheel braking system, a total braking torque consisting of a drive braking torque and/or a wheel braking torque to be applied to the wheels of a motor vehicle is adjusted such that the desired wheel braking torque is reduced by an amount which can be compensated by a (preferably maximally) possible increase of the drive braking torque, when the wheel braking system is particularly loaded and when the vehicle velocity is approximately constant (steady-state) operating mode. However, the increase of the drive braking torque is limited to a predefined amount (preferably achievable in the fired coasting operation) when the wheel braking system is loaded less highly or the vehicle velocity changes (dynamic operating mode).
Abstract:
A drive system of a working vehicle including a main engine drivingly connected to a hydraulic pump. The hydraulic pump is connected to first and second hydraulic motors. When an undesirable operating condition is detected, a control device shifts an actuator associated with at least one of the wheels, to reduce the displacement volume of the hydraulic motors driving that wheel. In addition, shifts are made in the actuator of the respective other hydraulic motor and/or in the actuator of the hydraulic pump, in order to maintain a constant speed of travel. The control device shifts the actuator of the hydraulic motor of the other wheel toward greater displacement, and if that shift is insufficient to compensate for the undesirable operating condition, the control device will shift the actuator of the hydraulic pump in the direction of reduced displacement volume.
Abstract:
A system providing protection to a power steering assist circuit in the event of a reversal of polarity of the power supply is disclosed. The circuit has a solenoid, a recirculating diode in an electrically parallel connection with the solenoid, and a protection device connected in electrical series with the recirculating diode. The protection device may be an n-channel field effect transistor. A power supply having a positive terminal connected to the circuit and negative terminal connected to the ground provides power to the circuit. In the event that the negative terminal of the power supply is connected the circuit and the positive terminal of the power supply is connected to the ground, the protection device will prevent the flow of current through the recirculating diode.
Abstract:
An automatic slowdown control apparatus for a vehicle is disclosed wherein automatic slowdown control can be ended appropriately and automatic slowdown is prevented from being performed excessively on a road of an ascending gradient. The automatic slowdown control apparatus starts automatic slowdown control of rendering a braking mechanism operative to slow down the vehicle when the stability of the posture and/or behavior of the vehicle upon turning is deteriorated. A control end threshold value is set such that the stability of the vehicle is displaced to the instability side as the ascending gradient of the uphill road increases.
Abstract:
With a deceleration control apparatus and method for a vehicle, which performs deceleration control of a vehicle based on at least a road inclination when a driver's intention to decelerate the vehicle is detected, at least one of a deceleration applied to the vehicle and a threshold used in performing the deceleration control is changed based on a change of a road inclination of a to-be-taken road located ahead of a cruising road on which the vehicle is presently running or will run soon with respect to a road inclination of the cruising road, the change corresponding to a downhill inclination with respect to the cruising road.
Abstract:
An automatic slowdown control apparatus for a vehicle is disclosed wherein automatic slowdown control can be ended appropriately and automatic slowdown is prevented from being performed excessively on a road of an ascending gradient. The automatic slowdown control apparatus starts automatic slowdown control of rendering a braking mechanism operative to slow down the vehicle when the stability of the posture and/or behavior of the vehicle upon turning is deteriorated. A control end threshold value is set such that the stability of the vehicle is displaced to the instability side as the ascending gradient of the uphill road increases.
Abstract:
A vehicle control system comprises a plurality of subsystem controllers including an engine management system 28, a transmission controller 30, a steering controller 48, a brakes controller 62 and a suspension controller 82. These subsystem controllers are each operable in a plurality of subsystem modes, and are all connected to a vehicle mode controller 98 which controls the modes of operation of each of the subsystem controllers so as to provide a number of driving modes for the vehicle. Each of the modes corresponds to a particular driving condition or set of driving conditions, and in each mode each of the functions is set to the function mode most appropriate to those conditions.