Abstract:
본 발명은 고압선 점검용 무인비행체 및 그 제어방법에 관한 것이다. 본 발명에 따른 고압선 점검용 무인비행체는 본체부(100); 상기 본체부(100)에 장착된 복수의 회전날개부(200); 상기 본체부(100)에 장착되어, 착륙시 상기 본체부(100)를 지지하는 지지부(300); 및 상기 본체부(100)에 장착되어, 상기 본체부(100)가 고압선(H)으로부터 일정 거리 이상 이탈되는 것을 방지하도록 상기 고압선(H)에 안착가능한 고압선 안착부(400);를 포함한다. 본 발명에 따르면, 무인비행체가 고압선에 안착된 상태로 비행하므로, 돌풍 또는 고압선과의 충돌에 따른 추락, 파손의 위험을 방지할 수 있다.
Abstract:
A hybrid airship such as an unmanned drone or UAV (10, 110, 210) capable of significantly extended flight times can use one of two technologies, or both together. The first technology uses a combination of a lifting gas (such as hydrogen or helium) in a central volume (12) or balloon and multirotor technology (13. 14) for lift and maneuvering powered by batteries (25). The second technology equips the airship with an on board generator (30) to charge the batteries (225) during flight for extended flight operations, with an internal combustion engine, such as a high power to weight ratio gas turbine engine (32), driving the generator. A quadcopter or other multicopter configuration is desirable.
Abstract:
An aerial scanning system creates a model of a structure using an aerial platform configured to follow a flight path of movement about the structure and an optical scanner. A control system executes processing software reading data corresponding to at least one surface of the structure and, data corresponding to movement of the aerial platform about the structure, and uses the data to construct a three dimensional model of the structure.
Abstract:
Die Erfindung betrifft ein Fluggerät mit einem Fluggeräterumpf (1) und mehreren Propellereinheiten (3), die schwenkbar in Bezug auf den Fluggeräterumpf (1) angeordnet sind und mit Tragflächen (5), die zumindest teilweise gegenüber dem Fluggeräterumpf (1) und unabhängig von den Propellereinheiten (3) verschwenkbar sind.
Abstract:
L'invention concerne un dispositif (FIG. l) exosquelette géométrique actif pour engin avec pilote ou drone gyropendulaire à propulsion compensatoire et collimation de gradient fluidique, multi-milieux, multimodal, à décollage et atterrissage vertical ou horizontal, pouvant évoluer dans les différents milieux physiques suivants : terrestre, aérien, maritime, sous-marin ou spatial, comportant un carénage annulaire pseudo-rhomboédrique actif qui 1) protège les différents groupes de propulsion et la charge utile en absorbant les chocs, 2) corrige l'assiette et réoriente la trajectoire lors de collisions avec tout obstacle de l'environnement physique ou du terrain, un tel engin étant muni de groupes de propulsion supérieur, intermédiaire et inférieur, et d'une structure vertébrale annulaire creuse intégrant une charge utile accueillant les fonctions applicatives adaptées à différents domaines : 1) défense et sécurité civile dans le cadre d'activité de recherche et de sauvetage, 2) exploration, navigation, transport, surveillance de scènes, 3) détection de gisements d'hydrocarbures ou de minerais, de forages ou pompages terrestre, sous-marin ou spatial, 4) support et stabilisation d'un ponton immergé mobile, libre ou ancré pour éolienne ou hydrolienne, 5) travaux d'entretien, 6) navigation et intervention endovasculaire ou intra-cavitaire en chirurgie, 7) télécommunications terrestres, aériennes, sous-marines ou spatiales, et 8) déploiement d'infrastructure de télécommunications en espace libre.
Abstract:
A lift generating device (10) for a vertical take - off/landing aircraft (1) is proposed which uses a fan (11) to drive air over an aerofoil (13a, 13b). Vehicles incorporating the lift generating device are also proposed which may have no exposed moving parts and a relatively small footprint and may therefore be capable of landing and taking off from most terrain. An orientation control device (20) is also proposed which has a fan directing an airflow over an adjustable aerofoil which generates the force desired to cancel the moments or torque experienced by a vehicle to which it is attached.
Abstract:
An electric and hybrid Vertical-Take Off and Landing ("VTOL") aircraft is disclosed comprising a plurality of small Electric Ducted Fans ("EDFs") of various sizes and orientations. The thrust of each fixed EDF is individually controlled by modulation of motor power by one or more onboard microcomputers connected to a plurality of onboard laser distance measuring sensors, at least three onboard three-axis accelerometers and at least one GPS thereby allowing extremely precise and safe VTOL operation. The aircraft may be employed to allow robotic and passenger vehicles to transition extremely quickly between normal linear flight and VTOL and tb operate in extreme and gusty conditions.
Abstract:
L'invention concerne un aérodyne (10) comportant une hélice (84) de sustentation, une carène (14) entourant l'hélice, et un moteur (26) électrique pour l'entraînement en rotation de l'hélice par rapport à la carène. L'aérodyne comporte en outre un train d'atterrissage (13) qui est relié à la carène par une liaison à cardan, le train d'atterrissage comportant des moyens de liaison servant à relier le train d'atterrissage à un câble (12) permettant de retenir l'aérodyne captif d'une plateforme, et permettant d'alimenter le moteur électrique.
Abstract:
A transmission system that is used in conjunction with a microturbine engine for propelling an aircraft body, such as a propeller-based fixed-wing aircraft or a rotor-based vertical lift aircraft, or for a wide variety of other applications. The output shaft of the microturbine engine preferably operates at a rotational speed in a range between 72,000 RPM and 150,000 RPM with an output power between 150 HP and 5 HP (and most preferably operates in an extended range between 50,000 RPM and 200,000 RPM with an output power between 200 HP and 5 HP). The transmission system includes a traction drive stage that provides a reduction ratio preferably having a value of at least 7, and most preferably greater than 9. The transmission system is of small-size preferably having a maximum diameter less than twelve inches. Preferably, the input stage of the transmission system is self-equilibrating such that first shaft can be supported without bearings and is operably coupled to the output shaft of the microturbine engine by an outside diameter piloted spline coupling mechanism. For vertical lift applications, a single traction stage along with a bevel gear assembly or other shaft transmission mechanism can be used to provide the necessary RPM reduction.