Abstract:
An elevator system includes a first elevator car (28) constructed and arranged to move in a first lane (30, 32, 34) and a first propulsion system (40) constructed and arranged to propel the first elevator. An electronic processor of the elevator system is configured to selectively control power delivered to the first propulsion system (40). The electronic processor includes a software-based power estimator configured to receive a first weight signal and a nm trajectory signal for calculating a power estimate and comparing the power estimate to a maximum power allowance. The electronic processor is configured to output an automated command signal if the power estimate exceeds the maximum power allowance.
Abstract:
A group supervisory control device for an elevator includes a hall call assignment portion assigning a specific car to a hall call registered; an operation prediction portion predicting which is the operation to the next hall registered, regenerative operation or power running operation, and the time for which the regenerating operation or the power running operation is performed when the specific car has stopped at a responding hall; and a door open time control portion comparing the time for which the regenerative operation or the power running operation of the specific car is performed with the remaining running time of any other car performing the power running operation or the regenerative operation already predicted, calculating overlap time for the operations simultaneously, and making door open time set for the specific car changed to determine the door open time that can obtain longer overlap time, whereby a door is closed.
Abstract:
An elevator system includes at least one elevator, at least one call input device and a call controller. The call input device transmits a call to the call controller. For a transmitted normal operation signal, at least one elevator car of an assigned elevator is activated to drive to the call input floor by at least one elevator controller of the assigned elevator. In a peak-time mode of the elevator system, at least one main operation signal is transmitted to at least one elevator. For a main operation signal transmitted to an elevator, at least one elevator car of said elevator is activated to drive between at least two main operation floors by at least one elevator controller of said elevator.
Abstract:
An exemplary method of controlling an elevator system includes determining a source floor of a new call from a passenger desiring elevator service. A direction of travel from the source floor for the new call is also determined. A path of a considered elevator car is simulated as if the new call were assigned to the considered elevator car by determining at least one of (i) a relationship between a position of the considered elevator car and the source floor or (ii) a relationship between a direction of movement of the considered elevator car and the direction of travel. The new call is assigned to one of a plurality of elevator cars if the assigning will satisfy each of (i) the one of the elevator cars will not move in a direction opposite the direction of travel during a time between the passenger boarding the one of the elevator cars and arriving at a destination of the passenger and (ii) the one of the elevator cars will not move in a direction opposite a travel direction of any currently assigned passenger during a time between the currently assigned passenger boarding the one of the elevator cars and arriving at a destination of the currently assigned passenger.
Abstract:
According to one embodiment, an elevator group control apparatus performs group control of operations of cars. The apparatus includes a power consumption calculation unit that calculates power consumption when each of the cars is run according to the operation curve on the basis of object data stored in the object data storage unit and an operation curve created by the operation curve creation unit, a distributed waiting controller that sets a car in a waiting state among the cars as a distributed waiting target car and outputs a distributed waiting instruction to move the target car to a distributed waiting floor, and a distribution instruction controller that obtains, from the power consumption calculation unit, power consumption when the distributed waiting target car is moved to the distributed waiting floor and, on the basis of the power consumption, permits or inhibits a distributed waiting instruction output from the distributed waiting controller.
Abstract:
An elevator installation with an elevator unit, which is connected with a power supply mains, is controllable by an elevator control with consideration of first control information based on local requirements of users. The elevator control receives from the power supply mains second control information containing status data for the power supply mains. The first and second control information is evaluated by the elevator control. The elevator control influences operation, which is determined by the first control information, of the elevator installation in dependence on the second control information so as to enable desired operation in terms of energy. A monitoring unit, which determines status data for the power supply mains and provides information for the consumers, is connectible with the power supply mains. The monitoring unit creates second control information for the elevator control in dependence on loading of the power supply mains.
Abstract:
An exemplary method of controlling an elevator system includes determining a source floor of a new call from a passenger desiring elevator service. A direction of travel from the source floor for the new call is also determined. A path of a considered elevator car is simulated as if the new call were assigned to the considered elevator car by determining at least one of (i) a relationship between a position of the considered elevator car and the source floor or (ii) a relationship between a direction of movement of the considered elevator car and the direction of travel. The new call is assigned to one of a plurality of elevator cars if the assigning will satisfy each of (i) the one of the elevator cars will not move in a direction opposite the direction of travel during a time between the passenger boarding the one of the elevator cars and arriving at a destination of the passenger and (ii) the one of the elevator cars will not move in a direction opposite a travel direction of any currently assigned passenger during a time between the currently assigned passenger boarding the one of the elevator cars and arriving at a destination of the currently assigned passenger.
Abstract:
Provided is an elevator group control apparatus which brings distributed standby control into action when the movement of users is heavy in one direction in an unbalanced manner in time zones which account for large proportions of an elevator use condition of a day, for example, in off-hour zones and time zones in which traffic demand is relatively small, thereby improving the waiting time of users, and does not bring distributed standby control into action when there is no unbalanced condition of the movement of the users, whereby it is possible to perform energy savings by reducing power consumption during runs without greatly worsening the waiting time of the users.In an elevator group control apparatus which performs the operation control of a plurality of elevators, there is detected a downward traffic flow ratio of traffic flows departing downward from floors higher than a prescribed main floor in the total traffic flow departing from one floor to another. If the downward traffic flow ratio is not less than a prescribed reference value, a standby mode for downward traffic flow is made effective. If the above-described standby mode for downward traffic flow has been made effective, at least one elevator car is caused to be on standby on a floor higher than the main floor and at least one elevator car is caused to be on standby on the main floor.
Abstract:
Provided are a group control method and a group control device capable of efficiently controlling the operation of elevators in diversified traffic situations and under a variety of specification conditions required for a group management system. A plurality of elevators are placed in service for a plurality of floors, an evaluation index for a newly made hall call is calculated, and the best suited car is selected and assigned to the hall call based on the evaluation index in the group control method of elevators. A waiting time expectation value of all passengers on all floors for each direction, either that have already occurred or that are expected to occur within a predetermined time period, is taken as the evaluation index, the waiting time expectation value being the expectation value for the sum or the average of waiting time.
Abstract:
The invention relates to elevator systems, in which a number of elevators operate in the same hoistway. The elevator system comprises at least one shuttle elevator and at least two local elevators, the elevator-cars of which are arranged to travel in the same elevator hoistway such that they can serve at least one shared transfer floor of a transfer level. The control system of the elevator system receives destination calls given from a destination call appliance, forms a plurality of route alternatives and allocates a destination call to one or more elevators by selecting the best route alternative. When allocating a destination call, the control system takes into account that the elevator cars of the local elevators that travel in the same elevator hoistway cannot simultaneously be at a shared transfer floor in cases in which the route alternative comprises a part-trip with a local elevator and a change of elevator at a shared transfer floor.