Abstract:
Silane-functionalized hydrophilic polymers and polymeric matrices are described. Hydrophilic matrices can be formed from the polymers, and can be used in association with the preparation of implantable and injectable medical devices. Exemplary devices include those having a durable lubricious coating formed from the hydrophilic polymers.
Abstract:
The present invention has its object to provide a curable composition which comprises a reactive silyl group-containing organic polymer, does not contain, as a silanol condensation catalyst, any organotin type curing catalyst currently of concern because of the toxic feature thereof, is excellent in surface curability and depth curability and, further, can provide cured products excellent in adhesiveness; the above object can be achieved by a curable composition which comprises: an organic polymer (A) containing a silicon-containing group capable of crosslinking under siloxane bond formation; and a guanidine compound (B-1), as a silanol condensation catalyst (B), represented by the general formula (1): R1N═C(NR12)2 (1) (wherein one of the five R1s is an aryl group and the other four R1s each independently is a hydrogen atom or a hydrocarbon group in which the carbon atom at position 1 is saturated).
Abstract:
A curable film-forming coating composition, typically a clearcoat, having improved compatibility over waterborne and solventborne basecoats. The composition includes a film-forming binder comprising a carbamate material, a curing agent, typically a monomeric melamine curing agent, and a hydroxy functional silane component. When used as a clearcoat over a standard pigmented basecoat, the resulting coating provides a substantially wrinkle free appearance and excellent adhesion to both waterborne and solventborne basecoats.
Abstract:
A method for providing a flexible hardcoat on a substrate includes the use of a dual cure silane possessing a UV curable group and a thermally curable silane group. The dual cure silane hydrolyzed and a portion of the silanol groups are condensed with silica to provide a fluid coating composition which is then applied to a substrate. A first cure with UV radiation causes the coating to harden into a flexible hardcoat which permits the substrate to be thermoformed or embossed without damage to the coating. The substrate is then heated to thermally cure the hardcoat to provide a fully cured hard and abrasion resistant hardcoat.
Abstract:
Ambient temperature curing coating composition comprising a polysiloxane having the formula: wherein each R1 is selected from the group consisting of alkyl, aryl, and alkoxy groups having up to six carbon atoms, reactive glycidoxy groups, and OSi(OR3)3 groups, wherein each R3 independently has the same meaning as R1, each R2 is selected from the group consisting of hydrogen and alkyl and aryl groups having up to six carbon atoms, and wherein n is selected so that the molecular weight of the polysiloxanes is in the range of from 500 to about 2,000, an alkoxysilyl-functional acrylic polymer, and a curing catalyst. The invention further relates to the preparation of an alkoxysilyl-functional acrylic polymer.
Abstract:
The present disclosure provides a silane crosslinking adhesive, sealant or coating containing a polymer, consisting of an organic framework that supports at least two alkoxy or acyloxysilyl groups and at least one filler. The filler consists at least partially of a highly disperse silicic acid with a BET surface area of 35 to 65 m2/g and is present in the adhesive, sealant or coating in a quantity of 1 to 60% by weight, in relation to the total weight of said adhesive, sealant or coating. The disclosure also provides the use of the adhesive, sealant or coating for bonding plastics, metal, glass, ceramics, wood or wood-based material, paper, paper-based material, rubber and textiles.
Abstract:
A hydrophilic member includes, in the following order: a substrate; an undercoat layer; and a hydrophilic layer formed by heating a hydrophilic composition containing a hydrophilic polymer having a structural unit represented by the formula (I-a) defined herein and a structural unit represented by the formula (I-b) defined herein, and a non-volatile catalyst.
Abstract:
A coating fluid for forming a coating on a support for use in inkjet printing comprises a liquid medium having dispersed therein (a) an inorganic oxide selected from aluminium oxide and silica, (b) a binder polymer, and (c) a polymeric crosslinking agent containing functional groups for reaction with the inorganic oxide. The components (a), (b) and (c) are preferably dispersed in an aqueous liquid and the relative amounts of inorganic oxide to polymeric crosslinking agent are from 500:1 to 15:1 preferably 250:1 to 20:1, the relative amounts of inorganic oxide to binder polymer are from 50:1 to 2:1 preferably 20:1 to 4:1 and the relative amounts of binder polymer to polymeric crosslinking agent are from 40:1 to 2:1 preferably from 20:1 to 3:1 the amounts being by weight on a dry basis.
Abstract:
A one-part moisture curable composition comprising an oligomeric or polymeric resin having hydrolysable silyl groups in its molecule, and a organometallic catalyst, wherein the silyl groups are present at an average functionality in the range of 1.0-6.0 to provide crosslinking upon exposure to moisture. In method form, the present invention is directed at a method for coating a substrate which comprises placing the one-part moisture curable composition in a container under substantially anhydrous conditions and then applying the one part moisture curable composition to a substrate surface and crosslinking the composition upon exposure to moisture on the substrate surface.
Abstract:
A polymer composition containing a specific silyl group-containing polymer, in which the maximum size of particles contained therein is 2 &mgr;m or less, and the number of particles having a size of 0.2 &mgr;m to 2 &mgr;m is 1,000 particles/ml or less. The composition may further contain a specific compound or at least one component selected from an organosilane represented by (R1)nSi(X)4-n, a hydrolyzate of the organosilane and a condensate of the organosilane. The composition is excellent in storage stability, high in hardness and excellent in mechanical strength such as wear resistance, so that a coating film having good taking-up properties even when no lubricant is contained, extremely smooth and having no difference in film thickness can be formed.