Abstract:
The present invention relates to an engine oil lubricant composition for use in internal combustion engines comprising one or more molybdenum containing compounds that deliver 1-1000 ppm molybdenum to the finished oil, one or more phosphorus containing compounds that deliver 25-650 ppm phosphorus to the finished oil, and one or more poly(meth)acrylate viscosity index improvers (VI improvers) that may or may not be functionalized, for improved fuel economy and turbocharger related deposits. In addition, the composition comprises an antioxidant system which is carefully balanced to provide improved fuel economy, comprising an aminic antioxidant, a phenolic antioxidant and an ashless dithiocarbamate. Additionally, the formulated oil may contain a dispersant poly(meth)acrylate, in addition to the PAMA VI improver, to reduce the amount of traditional succinimide dispersants.
Abstract:
A constant velocity joint having a boot constructed from a thermoplastic polyether ester as the boot material. The boot includes a lubricating grease composition for lubricating the constant velocity joint, the lubricating grease composition comprising calcium lignin sulfonate.
Abstract:
An industrial lubricant composition including an oil base selected from the group consisting of vegetable oil, Group I, Group II, Group III, Group IV, Group V and combinations thereof and a phosphorus-based non-chlorine additive. The industrial lubricant also includes at least one intercalation compound of a metal chalcogenide, a carbon containing compound and a boron containing compound, wherein the intercalation compound may have a geometry that is a platelet shaped geometry, a spherical shaped geometry, a multi-layered fullerene-like geometry, a tubular-like geometry or a combination thereof.
Abstract:
The present invention provides a grease composition capable of effectively preventing a rolling surface from having hydrogen brittleness-caused peeling, a grease-enclosed bearing in which the grease composition is enclosed, and a one-way clutch in which the grease composition is enclosed at a sliding portion. The grease composition contains a base grease consisting of a base oil and a thickener and an additive added to the base grease. The grease composition is capable of preventing hydrogen brittleness-caused peeling from occurring on a frictionally worn surface of a bearing portion containing an iron-based metal material or a newly generated surface consisting of the iron-based metal material exposed owing to wear. The additive contains at least one aluminum-based additive selected from among an aluminum powder and inorganic aluminum compounds. The mixing ratio of the aluminum-based additive to 100 parts by weight of the base grease is set to 0.05 to 10 parts by weight.
Abstract:
Composite particles and a method of forming composite particles are described. The composite particles comprise at least one inorganic nanoparticle covalently bound to at least one inorganic microparticle with a linking compound. Lubricant compositions and sprayable dispersion compositions comprising composite particles are also described.
Abstract:
Compositions having a plurality of hard particles and a plurality of lubricant nanoparticles are disclosed. Methods of making and using the compositions are also disclosed.
Abstract:
A composition that includes solid lubricant nanoparticles and an organic medium is disclosed. Also disclosed are nanoparticles that include layered materials. A method of producing a nanoparticle by milling layered materials is provided. Also disclosed is a method of making a lubricant, the method including milling layered materials to form nanoparticles and incorporating the nanoparticles into a base to form a lubricant.
Abstract:
The present invention relates to additives for use in lubricant compositions to processes for producing the additives, and to the use of the additives in lubricants and in systems that are lubricated. More specifically, the additive includes a capped particle comprising: (i) one or more inorganic core particles; and (ii) one or more multi-block copolymers attached to the inorganic particles. The multi-block copolymer includes at least one nonpolar polymer block interposed between two polar polymer blocks. One polar polymer block is attached to the core particle, and at least a portion of the another polar polymer block is not directly attached to the core particle. When used in a lubricant to lubricate a metallic surface of a workpiece, the capped particle preferably adheres to the metallic surface of the workpiece.
Abstract:
The invention provides a magneto-rheological grease composition which contains (a) a base oil including at least 30% by mass of an ether type synthetic oil; (b) an aliphatic diurea thickener; and (c) magnetic particles in an amount of 45 to 95% by mass based on the total mass of the composition. The magneto-rheological grease composition can show superior thermal stability, dispersion stability and magneto-rheological properties.
Abstract:
A lubricating grease is provided which is excellent in durability at high temperatures, inhibits the reaction between fluorine and steel and has a long life and a rolling bearing in which the lubricating grease is enclosed. The lubricating grease contains perfluoropolyether oil as a base oil thereof and fluorocarbon resin powder as a thickener thereof, a diurea compound having an —NH— bond in the molecular structure thereof, an organic-acid metal salt or a bismuth-containing compound such as bismuth sulfate. The rolling bearing has an inner ring and an outer ring disposed concentrically with each other, a plurality of rolling elements interposed between the inner ring and the outer ring, and a retainer dividedly holding the rolling elements.