Abstract:
An optical device for sensing a presence of an analyte in a person is provided. The optical device includes a light source, an optical stack, and a reader. The light source emits a first light having a first wavelength. The optical stack is placed on a skin of the person. The optical stack includes a sensor material and an optical filter. The sensor material emits a second light having a second wavelength when irradiated with the first light. An optical property of the second light is sensitive to the presence of the analyte. The optical filter is disposed on the sensor material and includes a plurality of microlayers numbering at least 10 in total. The optical filter has different first and second transmittances at the respective first and second wavelengths.
Abstract:
A portable color measurement device 10 is described. The device 10 has a body 20 including a light source 30 and a sensor 40. The body 20 includes a measurement zone 21 to accommodate, within the body 20, an element 100 to be measured for color. The light source 30 is configured to emit light along a path within the body 20 to the sensor 40. The measurement zone 21 is substantially in the path. The portable color measurement device is configured to measure properties of an accommodated element 100 in dependence on one or more outputs of the sensor 40.
Abstract:
A transmission spectroscopy device can direct light into a sample, and determine properties of the sample based on how much light emerges from the sample. The device can use a cell to contain the sample, so that the size of the cell defines the optical path length traversed by light in the sample. To ensure accuracy in the measurements, it is beneficial to calibrate the device by measuring the size of the cell periodically or as needed. To measure the size of the cell, the device can perform a transmission spectroscopy measurement of a known substance, such as pure water, to produce a measured absorbance spectrum of the known substance. The device can subtract a known absorbance spectrum of the known substance from the measured absorbance spectrum to form an oscillatory fringe pattern. The device can determine the size of the cell from a period of the fringe pattern.
Abstract:
In some aspects, a device for apportioning granular samples includes a sample feeder defining a conduit, the conduit including a first opening to receive the granular samples and a second opening. The device includes a shuttle operably coupled to the sample feeder to receive the granular samples from the conduit via the second opening. The shuttle is configured to apportion the granular samples to incrementally enter a sample chamber to be analyzed. The device includes an outlet conduit fluidly coupled to the sample chamber and configured to permit the sample chamber to be evacuated.
Abstract:
Cuvette, comprising at least one measuring area on each one of two arms that are pivotally connected to each other such that from a swung-apart condition, they can be swung together into a measuring position in which the two measuring areas have a distance for positioning a sample between the measuring areas, and means for positioning the two arms in a measuring position in a cuvette shaft of an optical measuring device with a sample between the two measuring areas in a beam path of the optical measuring device that crosses the cuvette shaft.
Abstract:
A gas measurement system for measuring the concentration of gaseous and/or vaporous components of a gas mixture by means of a color change of at least one reaction substance on a reaction support unit, which is arranged in at least two light permeable channels in such a manner that the color change on the reaction substance can be detected at low expense on a large number of separate positions. The detecting unit which detects the color change can be designed as a digital camera with an electronic image converter or image sensor, and an imaging optics system (e.g., a lens system). Related systems, methods, apparatus, and articles are also described.
Abstract:
An example embodiment may include a hyperspectral analyzation subassembly configured to obtain information for a sample. The hyperspectral analyzation subassembly may include one or more transmitters configured to generate electromagnetic radiation electromagnetically coupled to the sample, one or more sensors configured to detect electromagnetic radiation electromagnetically coupled to the sample, and an electromagnetically transmissive window. At least one of the sensors may be configured to detect electromagnetic radiation from the sample via the window. The hyperspectral analyzation subassembly may include an analyzation actuation subassembly configured to actuate at least a portion of the hyperspectral analyzation subassembly in one or more directions of movement with respect to the sample.
Abstract:
A method and system for testing the functional capability of an analytical instrument uses first and second blind samples. Each blind sample is a test substance with an amount of a parameter to be tested that is unknown to the user. Each blind sample is provided with an identification means with a unique identification. When the blind samples are tested by the user in the instrument being tested, the measurement values obtained and the unique identifications read are compared against predetermined values that are accessible to a test program configured as software on the analytical instrument. By comparison of the measurement values and the predetermined values, the functional capability of the analytical instrument is determined and the result is transmitted to an output unit of the analytical instrument.
Abstract:
A system and method for improving the outcome and consistency of hair coloring is provided. In an example method, an image of hair having a sample color may be received. A color space characteristic associated with the hair sample may be determined. An indication of a target color may be received. A colorant formulation may be identified for changing the hair from the sample color to the target color.
Abstract:
An apparatus for assisting in measuring a color of a target includes an enclosed housing having a first aperture formed in a first end and a second aperture formed in an opposite second end and aligned concentrically with the first aperture, an array of light emitting diodes positioned inside the housing, between the first aperture and the second aperture, and an array of reference colors having known reflectance spectra, the array of reference colors being removably positioned inside the housing, between the array of light emitting diodes and the second aperture.