Abstract:
The present invention relates to an inspection apparatus and an inspection method which selectively adjust a numerical aperture of illuminating light in the form of collimated light when inspecting a target object, such as a wafer or the like, using a spectrum, thereby preventing a diffraction phenomenon caused by the illuminating light. The inspection apparatus may include: a camera unit disposed above a target object; an illumination unit configured to illuminate the target object with illuminating light; and a light detection unit configured to detect reflection light of the target object illuminated with the illuminating light, wherein the illumination unit comprises a numerical aperture adjustment device which has a first optical member having a first numerical aperture that is replaceable with a second optical member having a second numerical aperture different from the first numerical aperture so as to reduce a diffraction phenomenon caused by the illuminating light.
Abstract:
A spectroscope includes: a light incidence section that allows light from an outside to be incident; a diffraction grating that disperses wavelengths of the light incident on the diffraction grating by the light incidence section; a light reflector having a reflecting surface having an inclination variable around a rotation axis of the reflecting surface; and a light emitter that emits the light reflected by the light reflector to the outside. At least one of the light incidence section, the diffraction grating, and the light reflector, and the light emitter are changeable in a direction orthogonal to the rotation axis. The position of the light emitter is changeable in a direction along a center axis of the light emitted from the light emitter.
Abstract:
The invention includes an improvement in a method of assessing a gemstone having at least one planar face with an internally reflecting surface including the steps of optically modifying the at least one planar face of the gemstone to return a sample beam from an internally reflecting plane corresponding to the at least one planar face to an optical coherence tomography (OCT) system; selectively directing the sample beam from an optical coherence tomography (OCT) system onto the gemstone; and generating an OCT image map of the gemstone to determine volume, gem carat weight and/or quality.
Abstract:
Method includes positioning a first carrier assembly on a system stage. The carrier assembly includes a support frame having an inner frame edge that defines a window of the support frame. The first carrier assembly includes a first substrate that is positioned within the window and surrounded by the inner frame edge. The first substrate has a sample thereon. The method includes detecting optical signals from the sample of the first substrate. The method also includes replacing the first carrier assembly on the system stage with a second carrier assembly on the system stage. The second carrier assembly includes the support frame and an adapter plate held by the support frame. The second carrier assembly has a second substrate held by the adapter plate that has a sample thereon. The method also includes detecting optical signals from the sample of the second substrate.
Abstract:
The invention concerns the field of biomolecule formulation screening and stability testing. It concerns a method for the evaluation of the colloidal stability of liquid biopolymer solutions. The present invention describes a method for determining the stability of a liquid pharmaceutical composition comprising: a) providing a liquid pharmaceutical composition in a container, b) shaking said container on a shaker, whereby the shaker performs an oloid movement, c) determining the stability of said liquid pharmaceutical composition.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. Qualitative source identification is provided. These methods can be practiced individually or in any combination.
Abstract:
A method of setting a laser-light intensity value includes: emitting laser light, the laser light being excitation light, a fluorescent-dyed biological sample being irradiated with the excitation light and emitting light; detecting fluorescence emitted by the biological sample, and outputting a signal corresponding to a brightness value; prestoring relation information, the relation information including the plurality of laser-light intensity values, and information on at least one possible correlation between a phototoxicity degree and the brightness value in relation to each of the laser-light intensity values, the phototoxicity to the biological sample resulting from the laser light; generating a fluorescence image having the brightness value based on the output signal; calculating a brightness value representative of a ROI area based on the generated fluorescence image; and referring to the relation information, and determining a laser-light intensity value satisfying tolerance of the phototoxicity based on the calculated representative brightness value.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.
Abstract:
An inspection device for a substrate includes a support member, a turning table and a first drive device. The turning table includes: a carrier pivotally mounted on a pivot shaft, the carrier having an observation aperture through its thickness direction; and positioning clamps which are mounted on the carrier and are used to retain the display substrate in the range of the observation aperture. The first drive device is in transmission connection with the pivot shaft of the carrier in order to drive the turning table to rotate around the pivot shaft. In use, an omnidirectional inspection of the display substrate can be achieved by turning the turning table. Moreover, the contact between the inspector and the display substrate can be avoided, the risk of damaging the display substrate during appearance inspection can be decreased, and therefore defects of the display substrate caused by appearance inspection can be reduced.
Abstract:
Improved gas leak detection from moving platforms is provided. Automatic horizontal spatial scale analysis can be performed in order to distinguish a leak from background levels of the measured gas. Source identification can be provided by using isotopic ratios and/or chemical tracers to distinguish gas leaks from other sources of the measured gas. Multi-point measurements combined with spatial analysis of the multi-point measurement results can provide leak source distance estimates. These methods can be practiced individually or in any combination.