Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for-changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.
Abstract:
An oscillator (100, 200) and a method of adjusting the frequency of oscillation of the oscillator (100, 200) are disclosed for generating a signal with an adjustable frequency in a frequency range from 1 GHZ to 200 GHz. The oscillator (100, 200) includes a loop circuit. The loop circuit has an amplifier (101), a delay element or filter (103), a phase shifter (102), a device for adjusting the phase shifter (102), and a coupler (104) to provide an output signal. The adjusting device is coupled to the phase shifter (102).
Abstract:
A controllable reactance implemented within an integrated circuit includes a first sub-circuit (20) comprising a reactive element, for example a capacitor 12, coupled in series with a transistor (14). A controllable current source (16) injects a controllable bias current through the transistor (14) to vary the effective resistance of the transistor (14) and hence the effective complex impedance of the capacitor combination. A second transistor (18) amplifies the current to increase the effective capacitance. Preferably, a second sub-circuit (24) includes corresponding components (26, 28, 30) to mirror the real component of the current flowing in the first sub-circuit (20), and transistors (32 and 34) to reflect an inverse current to the coupling node line (22) to cancel the real component of the current at the node, to thus simulate a purely capacitive circuit. An oscillator embodying this circuit is also disclosed. The invention can provide a controllable capacitance without the need for a conventional varactor diode.
Abstract:
A dual input voltage controlled oscillator ("VCO") suitable for use in clock and data recovery ("CDR") systems operating at 100s to 1,000s of MB/sec is described. When a PLL using this VCO is locked onto a data stream of a fixed bit rate, the bang/bang frequency of the VCO does not vary due to process and temperature variation occuring either during manufacture or operation. The VCO is also relatively insensitive to supply voltage variations.
Abstract:
A frequency detector of a phase-lock-loop circuit is used for measuring a frequency error between a frequency of an output signal of an oscillator and a frequency of a synchronizing signal. When the frequency error in each of 32 periods of the synchronizing signal exceeds a predetermined magnitude, the phase-lock-loop circuits begins operating in a coarse frequency correction mode. As long as the 32 periods have not lapsed, the phase-lock-loop circuit operates in an idle mode of operation and the oscillator is not corrected. As a result, during vertical retrace, when equalizing pulses occur, the phase-lock-loop circuit is not disturbed by a large frequency error.
Abstract:
A phase-locked-loop circuit includes an oscillator having switched capacitors that are selectively coupled to a positive feedback path of the oscillator in a coarse frequency error correction mode of operation. When the frequency error is small, the circuit operates in a fine error correction mode without varying the selection of the switched reactive elements.
Abstract:
A low noise linear amplifier and a microwave voltage controlled oscillator constructed from such amplifier. Each amplifier within the VCO utilizes a ratioed transistor configuration to generate a linear output over a wide range of inputs. Output current from the amplifier is split into a main output current and components of in-phase and 180.degree. out-of-phase current. A logarithmic tuning control combines the components of in-phase and 180.degree. out-of-phase currents in inverse ratio to provide a constant d.c. feedback current.
Abstract:
A voltage controlled oscillator comprises a plurality of differential amplification stages each arranged to introduce a phase shift between its differential input signal and its differential output signal. The frequency at which the desired phase shift occurs can be controlled by adjusting the control signal Vc. The stages are arranged such that the output of one amplifier becomes the input to the next amplifier, making the phase shift additive. Further, a phase shift of 180.degree. may be introduced by inverting the output from one stage before inputting it to the next stage. The total phase shift introduced by the stages is 360.degree.. In this way, an oscillating signal of varying phase shift is produced at the output of each stage. Each stage comprises a standard differential amplifier, well known in the art, having a matched pair of p-channel transistors and a matched pair of n-channel transistors. The differential input is applied to each gate of the n-channel transistor pair, and the differential output is generated at the drains of the n-channel transistor pair.