Abstract:
A frequency translation module for a broadband multi-channel communication system may include an analog signal converter, a digital channel selection device, and a digital-to-analog (D/A) converter. The analog signal converter is configured to receive a plurality of analog signals, to select analog signals residing in a predefined frequency band, and to convert each of the selected analog signals into a digital signal. The digital channel selection device is configured to process digital signals corresponding to the selected analog signals and to generate a composite output of digital signals representative of the selected analog signals. The D/A converter is configured to translate the composite output to an analog signal output decodable by a receiver. Further, the frequency translation module may include a mixer configured to upconvert the analog signal output to a frequency decodable by the receiver.
Abstract translation:用于宽带多通道通信系统的频率转换模块可以包括模拟信号转换器,数字通道选择装置和数模(D / A)转换器。 模拟信号转换器被配置为接收多个模拟信号,以选择驻留在预定频带中的模拟信号,并将所选择的模拟信号中的每一个转换为数字信号。 数字通道选择装置被配置为处理对应于所选择的模拟信号的数字信号,并产生表示所选模拟信号的数字信号的复合输出。 D / A转换器被配置为将复合输出转换成可由接收器解码的模拟信号输出。 此外,频率转换模块可以包括配置成将模拟信号输出上变频到由接收机解码的频率的混频器。
Abstract:
Imbalance and distortion cancellation for composite analog to digital converter (ADC). Such an ‘ADC’ is implemented using two or more ADCs may be employed for sampling (e.g., quantizing, digitizing, etc.) of an analog (e.g., continuous time) signal in accordance with generating a digital (e.g., discrete time) signal. Using at least two ADCs allows for the accommodation and sampling of various signals having a much broader dynamic range without suffering degradation in signal to noise ratio (SNR). Generally, the signal provided via at least one of the paths corresponding to at least one of the respective ADCs is scaled (e.g., attenuated), so that the various ADCs effectively sample signals of different magnitudes. The ADCs may respectively correspond to different magnitude and/or power levels (e.g., high power, lower power, any intermediary power level, etc.). Various implementations of compensation may be performed along the various paths corresponding to the respective ADCs.
Abstract:
A tuner front-end circuit for processing a radio frequency (RF) signal includes a first filter block that terminates the RF signal for unwanted frequency bands; a second filter block that provides selectivity within the unterminated signal by separating the unterminated signal into a plurality of separate signals, each of a different desired frequency band; and an amplifier block that amplifies each of the separate signals. One or more of the amplified separate signals can be provided to a tuner. The circuit can also include a daisy chain output block that provides the amplified separate signals to one or more additional tuners. One or more tracking filter blocks can also be included to provide further selectivity to the amplified separate signals and to reject signals at specific harmonics to prevent degradation of a signal-to-noise ratio. A method of processing an RF signal is also presented.
Abstract:
A frequency translation module for a broadband multi-channel communication system may include an analog signal converter, a digital channel selection device, and a digital-to-analog (D/A) converter. The analog signal converter is configured to receive a plurality of analog signals, to select analog signals residing in a predefined frequency band, and to convert each of the selected analog signals into a digital signal. The digital channel selection device is configured to process digital signals corresponding to the selected analog signals and to generate a composite output of digital signals representative of the selected analog signals. The D/A converter is configured to translate the composite output to an analog signal output decodable by a receiver. Further, the frequency translation module may include a mixer configured to upconvert the analog signal output to a frequency decodable by the receiver.
Abstract translation:用于宽带多通道通信系统的频率转换模块可以包括模拟信号转换器,数字通道选择装置和数模(D / A)转换器。 模拟信号转换器被配置为接收多个模拟信号,以选择驻留在预定频带中的模拟信号,并将所选择的模拟信号中的每一个转换为数字信号。 数字通道选择装置被配置为处理对应于所选择的模拟信号的数字信号,并产生表示所选模拟信号的数字信号的复合输出。 D / A转换器被配置为将复合输出转换成可由接收器解码的模拟信号输出。 此外,频率转换模块可以包括配置成将模拟信号输出上变频到由接收机解码的频率的混频器。
Abstract:
Embodiments of the present invention provide systems and methods for automatic amplifier gain profile control, including a method for automatically configuring a variable gain profile amplifier according to received input and a variable gain profile amplification system. Further, embodiments of the present invention provide systems and methods for increased gain profile accuracy, including methods and systems to reduce the effects of temperature and/or process variations on the gain profile of an amplifier.
Abstract:
A method and apparatus is disclosed to couple a transmission amplifier and a reception amplifier to a shared medium. An output of the transmission amplifier is directly coupled to an input of the reception amplifier to form a common connection. The transmission amplifier and the reception amplifier may receive a first amplifier bias via the common connection. In response to the first amplifier bias, the transmission amplifier provides a first communication signal to the shared medium and the reception amplifier does not provide a second communication signal from the shared medium. Alternatively, the transmission amplifier and the reception may receive a second amplifier bias via the common connection. In response to the second amplifier bias, the reception amplifier provides the second communication signal from the shared medium and the transmission amplifier does not provide the first communication signal to the shared medium.
Abstract:
Embodiments of the present invention provide systems and methods for automatic amplifier gain profile control, including a method for automatically configuring a variable gain profile amplifier according to received input and a variable gain profile amplification system. Further, embodiments of the present invention provide systems and methods for increased gain profile accuracy, including methods and systems to reduce the effects of temperature and/or process variations on the gain profile of an amplifier.
Abstract:
Apparatus 10 discloses a motorcycle 12 carriage 14 used for passenger transport. The motorcycle carriage 14 is comprised of an open carriage mounted to a frame having wheels thereunder with the frame extending to a coupling member mountable to a motorcycle receiver. In addition, the present invention 10 provides for an additional element in the form of a pivotably fastened extend able and retractable canopy.
Abstract:
An RF mixer includes a plurality of submixers coupled to a single input transistor pair and a single tail current source. An input LO signal is divided into multiple individual waveforms, each having a different phase. The phase differences are even in that the phase difference between any two time-adjacent individual waveforms is approximately equal to the phase difference between any other two time-adjacent individual waveforms. The submixers are appropriately scaled so that the individual waveforms, when summed, create a piecewise linear LO signal. The submixers also combine the individual waveforms with an input baseband signal to produce an output signal or to produce a baseband signal from an input mixed signal. In order to reduce noise in the system, only one submixer is active at any time. Further, polarities of some individual waveforms are reversed so that to avoid signal cancellation when by combining waveforms of opposite polarities.
Abstract:
A gain compensator compensates for the gain variation of a varactor-tuned voltage tuned oscillator (VCO) in a phase lock loop (PLL). The VCO includes a parallel LC circuit having multiple fixed capacitors that can be switched-in or switched-out of the LC circuit according to a capacitor control signal to perform band-select tuning of the VCO. The gain compensator compensates for the variable VCO gain by generating a charge pump reference current that is based on the same capacitor control signal that controls the fixed capacitors in the LC circuit. The gain compensator generates the charge pump reference current by replicating a reference scale current using unit current sources. The number of times the reference scale current is replicated is based on the fixed capacitance that is switched-in to the LC circuit and therefore the frequency band of the PLL. The reference scale current is generated based on a PLL control that specifics certain PLL characteristics such as reference frequency, loop bandwidth, and loop damping. Therefore, the reference pump current can be efficiently optimized for changing PLL operating conditions, in addition to compensating for variable VCO gain.