Abstract:
The present invention such as active diagnostic algorithms is developed not only to realize the early detection of degraded vacuum pumps for the protection of pump failure but also to provide their predictive maintenance. According to the present invention, it is possible to find simple and effective ways to deal with technical problems arising from the large variability of the pump-by-pump operation characteristics and the multiple process conditions where pumps run under the idle operation and gas-loaded operation conditions alternately, especially in semiconductor manufacturing process.
Abstract:
According to the present invention, the most challenging issues in this work have been to find systematic ways of enabling maintenance engineers to decide an adequate time for the replacement of vacuum pumps on the basis of their current performance assessment result. Further, the comparison of the currently evaluated diagnostics analysis results and the initial (or reference) data set is shown to enable maintenance engineers to decide the replacement of the considered vacuum pump according to the evaluated pump performance indicators. This quantitative diagnostic analysis result is expected not only to enable maintenance engineers to decide an adequate time for the replacement of vacuum pumps on the basis of their current performance assessment results but also to improve the reliability and confidence of the predictive maintenance of low vacuum pumps.
Abstract:
The present invention is related to a method of separation of compounds by electrophoresis in which the compounds such as genes, proteins, etc. may be analyzed very precisely as samples are introduced directly into the separation tubes of the chip at the collection site, and therefore, it is not necessary to have separate fluid paths or individual sample storing apparatus that have been necessary for the conventional electrophoresis; it is easy to make the chip as the structure of the chip becomes extremely simple, and high-density arrangement of the separation tubes is enabled; and further, the compounds such as genes, proteins, etc. may be analyzed very precisely without interference in the storage tubs by using a non-polar solvent as the solvent of the sample storage tub.
Abstract:
A method of manufacturing a reference material for determining incorporation of a genetically modified (GM) plant into a sample or analyzing a mixing ratio from a tissue-cultured cell line that is obtained by incubating tissues of either a GM plant or a non-GM plant, and a method of determining incorporation of a GM plant into a sample and analyzing a mixing ratio using the reference material are provided. The reference material for determining the incorporation of a genetically modified (GM) plant a sample or analyzing a mixing ratio using the tissue-cultured cell lines that are obtained by incubating tissues of the GM plant and the non-GM plant can be useful in producing a countless number of populations having the same genetic traits via the tissue culture. Thus, when a culture capacity of the reference material is increased to a large volume, it is possible to obtain a large volume of the reference material having uniform qualities with no quality variation between batches. Unlike the conventional reference materials manufactured using grain powder, a reference material with 100% purity can be obtained as either a GM or non-GM reference material by verifying the purity of the tissue-cultured cell line. Accordingly, it is possible to provide the uniform and stable supply of a reference material having uniform compositions.