Abstract:
A multiple source electrosurgical generator wherein one of the sources may be optimized for desiccation of the patient's tissue, another source may be optimized for fulguration thereof and a third source may be optimized for cutting. All sources operate into a common output circuit and may be actuated either individually or in combination. The sources may also be operated in desiccate only, fulgurate only and cut only modes of operation. The different modes of operation may be selected from a hand-held electrosurgical instrument. An insulated, split patient electrode may be used with the generator where the operating frequency of the desiccate source may be higher than that of the fulgurate or cut sources. A spark detection circuit may also be employed (a) to ensure fulguration when the active electrode is a needle, (b) to prevent neuromuscular stimulation and (c) to ensure continuity of the patient circuit when fulgurating with low levels of current.
Abstract:
Patient contact area measurement method and apparatus including a first electroconductive contact element adapted for contact with the patient; a second electroconductive contact element separated from the first contact element and also adapted for contact with the patient; and measuring circuitry disposed between the first and second electroconductive contact elements for measuring the area of contact of the patient with respect to the contact elements. The electroconductive contact elements may comprise (a) each electrode of a split electrosurgical patient electrode, (b) the active and patient electrodes employed in electrosurgery or (c) a cryosurgical probe together with a monitor electrode adapted for contact with the patient.
Abstract:
In an ESV a control system responds to impedance and temperature as sensed between and at the electrodes (13) during desiccation each of such electrodes being provided separately and independently through a suitable multiplexer with a specifically controlled RF power. An instantaneous impedance monitor senses impedance variations and controls by means of specific derivative sensitive algorithm part of a feedback loop, the output power delivered through each electrode. A further temperature dependent feedback loop power control system is operative in a multiplexed mode in pair with the above impedance feedback system. Such second system uses an array of temperature sensors placed in the immediate proximity of the each tissue contacting electrode, and an appropriate derivative sensitive algorithm. Both systems are operated in a multiplex mode through a first multiplexer. A second multiplexer shifts the output power to the various electrodes independently and separately.
Abstract:
An electrosurgical generator has an output power control system (10) that causes the impedance of tissue (14) to rise and fall in a cyclic pattern until the tissue (14) is desiccated. The advantage of the power control system (10) is that thermal spread and charring are reduced. In addition, the power control system (10) offers improved performance for electrosurgical vessel sealing and tissue welding. The output power is applied cyclically by a control system with tissue impedance feedback. The impedance of the tissue follows the cyclic pattern of the output power several times, depending on the state of the tissue (14), until the tissue becomes fully desiccated. High power is applied to cause the tissue (14) to reach a high impedance, and then the power is reduced to allow the impedance to fall. Thermal energy is allowed to dissipate during the low power cycle. The control system is adaptive to tissue in the sense that output power is modulated in response to the impedance of the tissue.
Abstract:
An electrosurgical generator is equipped with a smoke evacuator which becomes active upon acting either on the foot pedal (16) or on the activation button on the hand piece (32). Evacuation however only takes place when the suction motor (29a) is activated by a trigger device (14) via other components (25, 37, 27) whenever HF current begins to flow. The rate of suction is determined by a smoke detector (42) placed on the smoke passage (30). A similar system can be used for total or partial removal of liquids from the operation site.
Abstract:
An electrical apparatus for driving an ultrasonic piezoelectric crystal transducer in a surgical handpiece for the fragmentation and aspiration of tissue, which apparatus includes an electronic control loop (12) in combination with a voltage source amplifier (2) having an output which is connected to the piezoelectric crystal transducer (3) with a tuning inductor (4) in parallel. A control system for monitoring the control loop (12) and a component for controlling tissue selectively are also disclosed.