Abstract:
高純度の貴金属ナノ粒子1個と酸化物ナノ粒子1個が接合された複合ナノ粒子を再現性良く、かつ、均一にヘテロ界面を形成させることができ、さらに、被毒物の残存などを回避した、クリーンな生成法を提供する。 貴金属(M)を0.1~30at.%含有し、残部が卑金属(A)と不可避不純物からなり、粒子径が1~200nm(好ましくは1~100nm)の合金(A-M)ナノ粒子を不活性ガス中で生成させ、不活性ガスで搬送する途中で、合金(A-M)ナノ粒子の加熱、及び、導入された酸化性ガスと接触させることによって、ガス中に浮遊する合金(A-M)ナノ粒子中の卑金属成分(A)を酸化させ、かつ、酸化卑金属成分(A x O y )を貴金属成分(M)と相分離させて複合ナノ粒子(M-A x O y )を得ることを特徴とする。
Abstract:
A combustion turbine component (10) includes a combustion turbine component substrate (16) and an alloy coating (14) on the combustion turbine component substrate. The alloy coating (14) includes a first amount, by weight percent, of nickel (Ni) and a second amount, by weight percent, of cobalt (Co), the first amount being greater than the second amount. The alloy coating also includes chromium (Cr), aluminum (Al), and yttrium (Y). The alloy coating further includes at least one of titanium (Ti), tantalum (Ta), tungsten (W), and rhenium (Re). Moreover, the alloy coating includes at least one rare earth element, and an oxide of at least one of the yttrium the at least one rare earth element.
Abstract:
The invention relates to a metallic material consisting of at least one refractory metal or an alloy based on at least one refractory metal. Said metallic material is characterised in that it has an oxygen content of between approximately 1,000 and approximately 30,000 pg/g, and the oxygen is interstitially intercalated into the lattice structure of the metal.
Abstract:
A method for manufacturing bodies formed from insulated soft magnetic metal powder by forming an insulating film of an inorganic substance on the surface of particles of a soft magnetic metal powder, compacting and molding the powder, then carrying out a heat treatment to provide a body formed from insulated soft magnetic metal powder the method comprising: compacting and molding the powder; then magnetically annealing the powder at a high temperature above the Curie temperature for the soft magnetic metal powder and below the threshold temperature at which the insulating film is destroyed in a non-oxidizing atmosphere, such as a vacuum, inert gas,or the like; and then carrying out a further heat treatment at a temperature of from 400 deg C to 700 deg C in an oxidizing atmosphere, such as air, or the like.
Abstract:
The invention mainly concerns a method for preparing metal-matrix composites including at least steps of cold-process isostatic compaction of previously mixed powders (5) and of hot-process uniaxial pressing of the compact (12) resulting from the previous step. The inventive method enables metal-matrix composites with improved properties to be obtained. The invention also concerns a device for implementing in particular the isostatic compaction step comprising a latex sheath (1) wherein the mixture of powders (5) is poured, a perforated cylindrical container (2) wherein is arranged the latex sheath (1), and means (7, 10, 11) for sealed insulation of the mixture of powders (2) contained in the sheath (1).
Abstract:
Frangible firearm projectiles, firearm cartridges containing the same, and methods for forming the same. The firearm projectiles are formed from a compacted mixture of metal powders that includes zinc and iron powders and which may include an anti-sparking agent. The compacted mixture is heat treated for a time sufficient to form a plurality of discrete alloy domains within the compacted mixture. The frangible firearm projectile may be formed by a mechanism that includes vapor-phase diffusion bonding and oxidation of the metal powders and that does not include forming a liquid phase of any of the metal powders or utilizing a polymeric binder. A majority component of the frangible firearm projectile may be iron. One or more of zinc, bismuth, tin, copper, nickel, tungsten, boron, and/or alloys thereof may form a minority component of the frangible firearm projectile. The anti-sparking agent may include a borate, such as boric acid.
Abstract:
Erfindungsgemäß ist ein Verfahren zum Kodieren von Metallpulver vorgesehen. Dieses umfasst die folgenden Schritte: Bereitstellen einer Schmelze, Ausbilden eines Schmelzestrahls, Verdüsen des Schmelzestrahls mittels eines Verdüsungsfluids, Ausbilden von Metallpulverpartikeln aus dem Schmelzestrahl. Das Verfahren zeichnet sich dadurch aus, dass während des Verdüsens der Schmelze und/oder dem Verdüsungsfluid eine Kodierungskomponente oder ein Kodierungsgas derart zugesetzt ist, dass die Verwendung der Kodierungskomponente im Metallpulver detektierbar ist, wobei die gasförmige Kodierungskomponente ein oder mehrere Isotope zumindest eines Gases umfasst und der Anteil des zumindest einen Isotops gegenüber dem natürlich vorkommenden Anteil dieses Isotops im Gas verändert ist und/oder wobei die gasförmige Kodierungskomponente gasförmige Legierungselemente enthält.