Abstract:
An illumination device comprises one or more emitter modules having improved thermal and electrical characteristics. According to one embodiment, each emitter module comprises a plurality of light emitting diodes (LEDs) configured for producing illumination for the illumination device, one or more photodetectors configured for detecting the illumination produced by the plurality of LEDs, a substrate upon which the plurality of LEDs and the one or more photodetectors are mounted, wherein the substrate is configured to provide a relatively high thermal impedance in the lateral direction, and a relatively low thermal impedance in the vertical direction, and a primary optics structure coupled to the substrate for encapsulating the plurality of LEDs and the one or more photodetectors within the primary optics structure.
Abstract:
Systems and methods spectrally and radiometrically calibrate an optical spectrum detected with a color-image sensor of an optical spectrometer. When the color-image sensor includes a Bayer filter, the red-peaked, green-peaked, and blue-peaked spectral responses of the color filters forming the Bayer filter may be used to identify unique spectral signatures in the red, green, and blue color channels. These spectral signatures may be used to associate calibration wavelengths to the pixel locations of the color-image sensor where the spectral signatures are observed. A fitted model may then be used to associate a wavelength to each pixel location of the color-image sensor. These systems and methods account for translational shifts of the optical spectrum on the color-image sensor induced by optical image stabilization, and thus may aid optical spectrometry utilizing a digital camera in a smartphone or tablet computer.
Abstract:
In order to provide a technique by which a highly-accurate conversion rule of measurement values between different spectrocolorimetric devices can be easily set, the spectrocolorimetric device includes a light source, a light-receiving unit, and a conversion unit. The light-receiving unit spectroscopically disperses reflected light generated on a surface of an object according to irradiation of the object with illumination light emitted from the light source and measures a spectroscopic spectrum of the reflected light. The conversion unit calculates a spectral reflectance that can be acquired by another spectrocolorimetric device from the spectroscopic spectrum by using a calibrated spectral sensitivity of the other spectrocolorimetric device different from the spectrocolorimetric device and the spectroscopic spectrum.
Abstract:
A metrology system is used for measuring a spectral feature of a pulsed light beam. The metrology system includes: a beam homogenizer in the path of the pulsed light beam, the beam homogenizer having an array of wavefront modification cells, with each cell having a surface area that matches a size of at least one of the spatial modes of the light beam; an optical frequency separation apparatus in the path of the pulsed light beam exiting the beam homogenizer, wherein the optical frequency separation apparatus is configured to interact with the pulsed light beam and to output a plurality of spatial components that correspond to the spectral components of the pulsed light beam; and at least one sensor that receives and senses the output spatial components.
Abstract:
A metrology system is used for measuring a spectral feature of a pulsed light beam. The metrology system includes: a beam homogenizer in the path of the pulsed light beam, the beam homogenizer having an array of wavefront modification cells, with each cell having a surface area that matches a size of at least one of the spatial modes of the light beam; an optical frequency separation apparatus in the path of the pulsed light beam exiting the beam homogenizer, wherein the optical frequency separation apparatus is configured to interact with the pulsed light beam and to output a plurality of spatial components that correspond to the spectral components of the pulsed light beam; and at least one sensor that receives and senses the output spatial components.
Abstract:
A metrology system is used for measuring a spectral feature of a pulsed light beam. The metrology system includes: a beam homogenizer in the path of the pulsed light beam, the beam homogenizer having an array of wavefront modification cells, with each cell having a surface area that matches a size of at least one of the spatial modes of the light beam; an optical frequency separation apparatus in the path of the pulsed light beam exiting the beam homogenizer, wherein the optical frequency separation apparatus is configured to interact with the pulsed light beam and to output a plurality of spatial components that correspond to the spectral components of the pulsed light beam; and at least one sensor that receives and senses the output spatial components.
Abstract:
A chromatic confocal sensor includes: a light source portion that emits a plurality of light beams having different wavelengths; a plurality of optical heads that converge the plurality of light beams emitted from the light source portion at different focal positions and emit measurement light reflected by a measurement point at the focal positions; a spectrometer including a line sensor, and an optical system that includes a diffraction grating that diffracts a plurality of measurement light beams emitted from the plurality of optical heads, and emits the plurality of measurement light beams diffracted by the diffraction grating to a plurality of different light-receiving areas of the line sensor; and a position calculation portion that calculates a position of a plurality of measurement points as a measurement target of the plurality of optical heads based on a light-receiving position of the plurality of light-receiving areas of the line sensor.
Abstract:
An example of an optical accessory configured to produce an optical image depicting spectral characteristics of light. The produced optical image is captured by an image capture sensor of a mobile device. The captured image is processed by the mobile device to produce a measured value corresponding to a lighting-related parameter.
Abstract:
A wavelength variable interference filter includes a fixed substrate, a movable substrate, a fixed reflective film provided on the fixed substrate, a movable reflection film provided on the movable substrate and opposed to the fixed reflective film via an inter-reflective film gap, a fixed electrode provided on the fixed substrate, a movable electrode provided on the movable substrate and opposed to the fixed electrode via an inter-electrode gap, a fixed charging preventing electrode provided along the outer circumferential edge of the fixed electrode and in non-contact with the fixed electrode and grounded, and a movable charging preventing electrode provided along the outer circumferential edge of the movable electrode and in non-contact with the movable electrode and grounded.
Abstract:
An image forming apparatus includes an image forming unit configured to form a measurement image on a sheet, a measurement unit configured to emit light to the measurement image, and measure light reflected from the measurement image, a selection unit configured to select one of a first mode for feeding a sheet, forming a measurement image on the sheet with the image forming unit, and measuring the measurement image on the sheet with the measurement unit, and a second mode for feeding a chart on which a measurement image has already been formed, and measuring the measurement image on the chart with the measurement unit without performing image formation with the image forming unit, and a control unit configured to control the measurement unit to perform measurement of the measurement image according to the mode selected by the selection unit.