Abstract:
A diagnostic assay system including a test device and a scanning device are described. In one implementation, the scanning device includes a source of electromagnetic radiation, an optics assembly, a detector, and a microprocessor disposed within a chassis. The test device and scanning device may be configured to be movable relative to each other during operation of the scanning device.
Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
An emission intensity measuring device includes a light receiving unit that is disposed opposed to a biochip having a plurality of compartments in which a sample is housed, and includes a plurality of light receiving elements that are arranged, and a determining section that determines a weighting rate of each of the light receiving elements based on a noise characteristic of the light receiving element, acquired in advance. The emission intensity measuring device further includes a multiplying section that multiplies the output of each of the light receiving elements by the weighting rate to calculate a weighted output of each of the light receiving elements, and an adding section that adds the weighted outputs of the light receiving elements opposed to a respective one of the compartments.
Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
A blood analysis apparatus is provided. The blood analysis apparatus includes: a chip holding portion having an aperture which allows light to pass therethrough and holding a μ-TAS chip for holding a measurement liquid; a rotary body on which the chip holding portion is mounted; a light source; and a light-receiving unit. A measurement position of the rotary body at which the measurement liquid is to be measured with the light from the light source is set by: rotating the rotary body to obtain a light value of light which is emitted from the light source and received by the light-receiving unit through the aperture; and setting a rotational position of the rotary body where the light value is a threshold value or more, as the measurement position.
Abstract:
Scanning of a microarray is performed through a mask that exposes a plurality, but not all, of the sites of the microarray, and either the mask is movable relative to the microarray or the microarray is movable relative to the mask, or both. The mask is useful as a means of restricting the illumination of sites on the microarray to those that can be illuminated while the scan head is traveling at a steady, target velocity, blocking the passage of light between the scan head and the microarray at those points in the scan head trajectory where the scan head is either accelerating or decelerating. The mask is also useful for reducing background noise in the microarray image by preventing light spillage to sites adjacent to those being scanned.
Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
A fluorescence detection apparatus for analyzing samples located in a plurality of wells in a thermal cycler and methods of use are provided. In one embodiment, the apparatus includes a support structure attachable to the thermal cycler and a detection module movably mountable on the support structure. The detection module includes one or more channels, each having an excitation light generator and an emission light detector both disposed within the detection module. When the support structure is attached to the thermal cycler and the detection module is mounted on the support structure, the detection module is movable so as to be positioned in optical communication with different ones of the plurality of wells. The detection module is removable from the support structure to allow easy replacement.
Abstract:
A multiphoton excitaion microscope for simultaneously detecting differently colored fluorescence materials on biochips includes a multiphoton excitation source, objectives, and a plurality of detection channels. The biochip is hybridized and labeled with fluorescence materials for expressing hybridized biological signals. The multiphoton excitation source is focused to a light spot on the biochip to excite the fluorescence materials bound thereon. After that, the fluorescence emission at different wavelengths from the different fluorescent materials can be detected by the plural detection channels.
Abstract:
The present invention relates to a photometric device for measuring optical parameters. The invention functions in the ultraviolet light range through use of a monochromator and splits the test light in multiple channels by a rotor assembly, including a mirror.