Abstract:
A measuring device includes a first optical sensor row and a second optical sensor row between which a planar object to be measured is placed. The direction of the first sensor row and the direction of the second sensor row differ from one another. Each sensor of the first sensor row forms data representing a distance between the object to be measured and the sensor. Each sensor of the second sensor row forms data representing a distance between the object to be measured and the sensor in order to determine at least one property of the object to be measured on the basis of the data.
Abstract:
Apparatus and methods are provided for the imaging of structures in deep tissue within biological specimens, using spectral imaging to provide highly sensitive detection. By acquiring data that provides a plurality of images of the sample with different spectral weightings, and subsequent spectral analysis, light emission from a target compound is separated from autofluorescence in the sample. With the autofluorescence reduced or eliminated, an improved measurement of the target compound is obtained.
Abstract:
Apparatus and methods are provided for the imaging of structures in deep tissue within biological specimens, using spectral imaging to provide highly sensitive detection. By acquiring data that provides a plurality of images of the sample with different spectral weightings, and subsequent spectral analysis, light emission from a target compound is separated from autofluorescence in the sample. With the autofluorescence reduced or eliminated, an improved measurement of the target compound is obtained.
Abstract:
An apparatus and method of quantitatively obtaining a measurement of pollen of a plant. One method of counting comprises imaging the sample with the pollen well-distributed in the focal plane of the imager. Image evaluation software can identify and count objects in the image that are consistent with pollen. Total pollen count for the plant can be derived from the count of pollen of the sample, proportionality of the sample volume to the starting volume, and proportionality of area of sample imaged to total area of sample. Pollen quantification can be used for research or commercial production decisions relative to the plant or its seed.
Abstract:
The invention features a method including: (i) providing spectrally resolved information about light coming from different spatial locations in a sample comprising deep tissue in response to an illumination of the sample, wherein the light includes contributions from different components in the sample; (ii) decomposing the spectrally resolved information for each of at least some of the different spatial locations into contributions from spectral estimates associated with at least some of the components in the sample; and (iii) constructing a deep tissue image of the sample based on the decomposition to preferentially show a selected one of the components.
Abstract:
A film densitometer for generating digital density values as a function of analog transmittance signals received at an input. A comparator coupled to the input compares the transmittance signals to one or more range references characterizing a plurality of ranges of transmittance signal magnitudes, and provides digital transmittance range signals as a function of the comparison. An amplifier amplifies the transmittance signals to provide amplified transmittance base signals. A gain control circuit coupled to the amplifier and the comparator controls the gain factor of the amplifier as a function of the magnitudes of the transmittance signals. The amplified transmittance base signals are converted to digital transmittance base values by an analog-to-digital converter. A lookup table of data characterizing the logarithmic relationship between transmittance base values and density base values is stored in base memory. A lookup table of data characterizing the relationship between the transmittance range signals and range gain values is stored in range memory. A digital processor accesses the memory as a function of the transmittance base values and transmittance range signals, and generates the digital density values as a function of a sum of the density base values and range gain values.
Abstract:
Apparatus and methods may provide for determining a value of chemical parameter. One or more light emitters may be positioned within a housing to emit light through an aperture of the housing. The emitted light may illuminate a color area of a structure that is separable from the housing, such as a test strip, a printed color reference, and so on. A color sensor may be positioned within the housing to capture reflected light and to convert the reflected light to an initial digitized color space that may be usable to determine a color shade of a color area. The reflected light may, for example, be captured independently at least of a dimension (e.g., predetermined size, shape, etc.) of the color area.
Abstract:
An egg identification system (100) for determining viability of an avian egg (1) is provided. Such a system (100) includes an emitter assembly (200) configured to emit electromagnetic radiation toward an egg (1). A detector assembly (300) is axially aligned with the emitter assembly (200) to detect electromagnetic radiation transmitted through the egg (1). The detector assembly (300) is spaced-apart from the egg (1) during operation thereof such that the detector assembly (300) does not contact the egg (1). The detected electromagnetic radiation is used to generate an output signal. The output signal is processed to determine whether there exists a periodic variation or an aperiodic perturbation in an intensity of the electromagnetic radiation transmitted through the egg (1) corresponding to action of a heart, such as heartbeat, or embryo movement, wherein the existence of the periodic variation or aperiodic perturbation indicates that the egg (1) is viable. An associated method is also provided.
Abstract:
Systems and methods for measuring spectra and other optical characteristics such as colors, translucence, gloss, and other characteristics of objects and materials such as skin. Instruments and methods for measuring spectra and other optical characteristics of skin or other translucent or opaque objects utilize an abridged spectrophotometer and improved calibration/normalization methods. Improved linearization methods also are provided, as are improved classifier-based algorithms. User control is provided via a graphical user interface. Product or product formulations to match the measured skin or other object or to transform the skin or other object are provided to lighten, darken, make more uniform and the like.
Abstract:
A downhole system in which an agile light source is used to simulate an integrated optical element to measure one or more characteristics of a fluid in a wellbore. The downhole system is both rugged and compact and allows spectral measurements of samples using a broad spectral band with a reduced number of physical components.