Abstract:
A method and system for a noise cancellation comprises an amplifier in communication with the three or more speakers disposed in an area. A system controller produces a driver signal for each of the speakers in response to a signal from at least one microphone detecting sound in the area and communicates the driver signals to the amplifier. The amplifier drives each speaker with the driver signal produced for that speaker. In response to the driver signals, the speakers emit sound that combined produces a substantially uniform sound pressure field for a particular zone within the area. The substantially uniform sound pressure field produced by the speakers has a magnitude and phase adapted to attenuate a noise field in the area corresponding to the sound detected by the at least one microphone.
Abstract:
A driving device for a sound system by loudspeaker signals, wherein the sound system has a wave field synthesis loudspeaker array and one or several supply loudspeakers arranged separate from the wave field synthesis array includes an audio input for receiving at least one audio signal from at least one sound source, a position input for receiving information on a position of the sound source, a wave field synthesis unit for calculating loudspeaker signals for the loudspeakers of the wave field synthesis loudspeaker array, and a provider for providing the loudspeaker signal for the one or the several supply loudspeakers. The driving device enables a sound system by means of which sound localization becomes possible for the audience and at the same time pleasant levels can be achieved also in the first rows of the audience.
Abstract:
A localized multimodal haptic system includes one or more electromechanical polymer (EMP) transducers, each including an EMP layer, such as an electrostrictive polymer active layer. In some applications the EMP transducer may perform an actuator function or a sensor function, or both. The EMP polymer layer has a first surface and a second surface on which one or more electrodes are provided. The EMP layer of the EMP actuator may be 5 microns thick or less. The EMP transducers may provide local haptic response to a local a stimulus. In one application, a touch sensor may be associated with each EMP transducer, such that the haptic event at the touch sensor may be responded to by activating only the associated EMP transducer. Furthermore, the EMP transducer may act as its own touch sensor. A variety of haptic responses may be made available. The EMP transducers may be used in various other applications, such as providing complex surface morphology and audio speakers.
Abstract:
Herein provided is a method and system for directional enhancement of a microphone array comprising at least two microphones by analysis of the phase angle of the coherence between at least two microphones. The method can further include communicating directional data with the microphone signal to a secondary device, and adjusting at least one parameter of the device in view of the directional data. Other embodiments are disclosed.
Abstract:
A telepresence video conference endpoint device includes spaced-apart microphone arrays each configured to transduce sound into corresponding sound signals. A processor receives the sound signals from the arrays and determines a direction-of-arrival (DOA) of sound at each array based on the set of sound signals from that array, determines if each array is blocked or unblocked based on the DOA determined for that array, selects an array among the arrays based on whether each array is determined to be blocked or unblocked, and perform subsequent sound processing based on one or more of the sound signals from the selected array.
Abstract:
A telepresence video conference endpoint device includes spaced-apart microphone arrays each configured to transduce sound into corresponding sound signals. A processor receives the sound signals from the arrays and determines a direction-of-arrival (DOA) of sound at each array based on the set of sound signals from that array, determines if each array is blocked or unblocked based on the DOA determined for that array, selects an array among the arrays based on whether each array is determined to be blocked or unblocked, and perform subsequent sound processing based on one or more of the sound signals from the selected array.
Abstract:
Methods and system are described for cancelling interference in a microphone system. A positive bias voltage is applied to a first microphone diaphragm and a negative bias voltage is applied to a second microphone diaphragm. The diaphragms are configured to exhibit substantially the same mechanical deflection in response to acoustic pressures received by the microphone system. A differential output signal is produced by combining a positively-biased output signal from the first microphone diaphragm and a negatively-biased output signal from the second microphone diaphragm. This combining cancels common-mode interferences that are exhibited in both the positively-biased output signal and the negatively-biased output signal.
Abstract:
Herein provided is a method and system for directional enhancement of a microphone array comprising at least two microphones by analysis of the phase angle of the coherence between at least two microphones. The method can further include communicating directional data with the microphone signal to a secondary device, and adjusting at least one parameter of the device in view of the directional data. Other embodiments are disclosed.
Abstract:
Provided is an audio signal processing device including frequency conversion units configured to generate a plurality of input audio spectra by performing frequency conversions on input audio signals input from a plurality of microphones provided in a housing, a first input selection unit configured to select input audio spectra corresponding to a first combination direction from among the input audio spectra based on an arrangement of the microphones for the housing, and a first combining unit configured to generate a combined audio spectrum having directivity of the first combination direction by calculating power spectra of the input audio spectra selected by the first input selection unit.