Abstract:
A method and system for producing dispersed waxes, including a high shear mechanical device. In one embodiment, the method comprises forming a dispersion of wax globules in a carrier liquid in a high shear device prior to implementation in a waxy product. In another instance the system for producing waxy products comprises a high shear device for dispersing wax in a carrier liquid.
Abstract:
A method for introducing inhibitor into a fluid to be treated by forming a dispersion comprising droplets, particles, or gas bubbles of inhibitor dispersed in a continuous phase of a carrier, wherein forming the dispersion comprises subjecting a mixture of the inhibitor and the carrier to a shear rate of greater than about 20,000 s−1 in a high shear device comprising at least one generator comprising a rotor and a complementarily-shaped stator, wherein the rotor and the stator each comprise grooves, and wherein the grooves of the stator and the grooves of the rotor of each generator are disposed in alternating directions, and using at least a portion of the dispersion to inhibit corrosion.
Abstract:
A system for the production of aerated fuels, the system including a high shear device configured to produce an emulsion of aerated fuel comprising gas bubbles dispersed in a liquid fuel, wherein the gas bubbles in the emulsion have an average bubble diameter of less than about 5 μm, and an internal combustion engine configured for the combustion of the emulsion, and wherein the gas comprises at least one component selected from the group consisting of air, water vapor, methanol, nitrous oxide, propane, nitromethane, oxalate, organic nitrates, acetone, kerosene, toluene, and methyl-cyclopentadienyl manganese tricarbonyl.
Abstract:
Herein disclosed is a system for hydrating an alkylene oxide that includes a high shear device configured to form a dispersion of an alkylene oxide and water, the high shear device comprising a rotor, a stator, and a catalytic surface, wherein the dispersion comprises gas bubbles with an average gas bubble diameter of less than about 5 μm; a pump configured for delivering a liquid stream to the high shear device; and a reactor coupled to the high shear device, and configured to receive the dispersion from the high shear device, wherein the alkylene oxide is hydrated in the reactor.
Abstract:
Methods and systems for the synthesis of alcohol are described herein. The methods and systems include a method of hydrating an olefin that may include emulsifying an olefin gas in a water stream in a high shear device under high shear conditions to produce a dispersion; and contacting the dispersion with a catalyst to hydrate the olefin gas and form an alcohol.
Abstract:
Herein disclosed is a method of processing a medium containing algae microorganisms to produce algal oil and by-products, comprising providing the medium containing algae microorganisms; passing the medium through a rotor-stator high shear device; disintegrating cell walls of and intracellular organelles in the algae microorganisms to release algal oil and by-products; and removing the algae medium from an outlet of the high shear device. In an embodiment, disintegration is enhanced by a penetrating gas capable of permeating the cell wall. In an embodiment, enhancement is accomplished by super-saturation of the penetrating gas in the medium or increased gas pressure in a vessel. In an embodiment, the penetrating gas is different from the gas produced by the cell during respiration. A suitable system is also discussed in this disclosure.
Abstract:
Herein disclosed is a system for producing an organic, the system including at least one high shear mixing device having at least one rotor and at least one stator separated by a shear gap, wherein the shear gap is the minimum distance between the at least one rotor and the at least one stator; a pump configured for delivering a fluid stream comprising liquid medium and light gas to the at least one high shear mixing device, wherein the at least one high shear mixing device is configured to form a dispersion of the light gas in the liquid medium; and a reactor comprising at least one inlet and at least one outlet, wherein the at least one inlet of the reactor is fluidly connected to the at least one high shear mixing device, and wherein the at least one outlet is configured for extracting the organic therefrom.
Abstract:
A composition comprises a plurality of microbeads dispersed within a base material. The plurality of microbeads is formed from a material comprising a renewable triglyceride wax having an I.V. of less than 70. The base material may be selected from the group consisting of soap, toothpaste, deodorant, mascara, ink, and cosmetics. The renewable triglyceride wax may be derived from oils selected from the group consisting of soybean, soy stearine, stearine, castor, corn, cottonseed, rape, canola, sunflower, palm, palm kernel, coconut, crambe, linseed, peanut, or fats, such as animal fats, including lard and tallow, and blends thereof.
Abstract:
Herein disclosed in a method comprising: shearing a feed comprising a solid component in a high shear device to produce a product, at least a portion of which comprises sheared solids; and separating at least some of the sheared solids from the product to produce a component-reduced product, wherein the solid component in the feed stream comprises a first particle density, and wherein the sheared solids in the product comprise a second particle density greater than the first particle density. In some embodiments, the solid component of the feed comprises gas trapped therein, and wherein at least a portion of said gas is released from the solid component upon shearing. Herein also is disclosed a method of comminuting solids in a feed stream comprising a solid component by processing the feed stream in a high shear device to produce a product stream comprising comminuted solids.
Abstract:
Herein disclosed is a reactor comprising a housing; an inlet tube having a section with perforations along its length, wherein the inlet tube section is within the reactor housing; an outlet tube having a section with perforations along its length, wherein the outlet tube section is within the reactor housing; and at least one cylinder made of sintered metal contained within the reactor housing, wherein the sintered metal is catalytically active. In some cases, the sintered metal in the reactor comprises a porous metallic multifunctional (PMM) catalyst. Other reactor designs and the method of use are also described herein.