Abstract:
A flowmeter includes a process sensor assembly providing a sensor signal and a filter stage comprising a low pass filter and a high pass filter and providing a filtered signal from the sensor signal. A processor determines that a filtered signal is indicative of a low flow condition for a first fluid, alters at least one parameter of the low pass filter and at least one parameter of the high pass filter in response to the low flow condition such that the filter stage provides a new filtered signal, determines that the new filtered signal is not indicative of a low flow condition for a second fluid and generates an alarm in response to the new filtered signal not being indicative of a low flow condition for the second fluid.
Abstract:
An industrial process control field device includes a process variable transducer configured to sense or control a process variable. Field device circuitry is configured to couple to the process variable transducer and communicate information related to the process variable to another location. The field device circuitry includes an optical isolator having transmit circuitry on a first side of a galvanic isolation configured to transmit an optical signal which is pulsed on and off across the isolation. Receive circuitry is located on a second side of galvanic isolation and configured to receive the optical signal with an optical sensor. The optical sensor enters an “on” state when it receives a pulse and is otherwise in an “off” state. The receive circuitry provides a secondary side output based upon the received optical signal. The receive circuitry enters in a low power state when the optical sensor is in the “off” state.
Abstract:
A magnetic flowmeter includes a flowtube arranged to receive a flow of process fluid. A coil is positioned proximate the flowtube and arranged to apply a magnetic field to the process fluid in response to a drive current alternating direction. First and second electrodes are arranged to sense a voltage potential in the process fluid in response to the applied magnetic field. The voltage potential is indicative of flow rate of process fluid through the flowtube. A sensor is coupled to the first and second current paths which has a sensor output related to the drive current. Diagnostic circuitry provides a diagnostic output as a function of a transient change in the sensor output when current flowing through the coil alternates direction.
Abstract:
A process fluid pressure sensing system includes a process fluid pressure transmitter and a process manifold. The process fluid pressure transmitter has first and second pressure inlets and is configured to obtain a measurement relative to pressures applied at the first and second pressure inlets and provide a process variable output based on the measurement. The process manifold is operably coupled to a process fluid and has first and second pressure outlets. A first high-pressure coupling joins the first pressure outlet of the process manifold to the first pressure inlet of the process fluid pressure transmitter. A second high-pressure coupling joins the second pressure outlet of the process manifold to the second pressure inlet of the process fluid pressure transmitter. The first and second high-pressure fluid couplings are configured to accommodate misalignment between the respective pressure outlets and inlets.
Abstract:
A wafer-type electromagnetic flow sensor includes a single-piece chassis having a pair of faces and a flow conduit extending between the pair of faces. Each face of the chasses includes a feature configured to engage a metal sealing ring. A non-conductive liner is disposed in the flow conduit of the single-piece chassis. A plurality of electromagnetic coils is configured to generate a flux into process fluid flowing through the flow conduit. A pair of electrodes is configured to electrically couple to the process fluid. A feedthrough assembly is configured to maintain process fluid pressure while allowing a plurality of electrical conductors to pass therethrough.
Abstract:
A corrosion rate measurement system includes a first membrane of a first material configured to be exposed to a corrosive material and deflect in response to corrosion. A second membrane is configured to be exposed to a corrosive material and deflect in response to corrosion. A pressure sensor is operably coupled to at least one of the first and second membranes and configured to measure deflection of at least one of the first and second membranes as a function of a pressure and an amount of corrosion at least one of the first and second membranes.
Abstract:
An embodiment of the present invention includes a display device including a mechanical indicator, a reference photodetector, a measurement photodetector, and an opaque shroud. The opaque shroud is connected to the mechanical indicator to variably cover the measurement photodetector based on a position of the mechanical indicator. The opaque shroud does not cover the reference photodetector.
Abstract:
A temperature sensor includes a temperature probe, an adapter, a resilient device, and a visual indicator. The temperature probe includes a temperature sensing device disposed at a temperature probe tip. The adapter surrounds a portion of the temperature probe such that the temperature probe is movable within the adapter in a lengthwise direction. The adapter includes a physical reference. The resilient device is adapted to produce a force between the adapter and the temperature probe. The force being variable based on a position of the temperature probe within the adapter. The visual indicator is disposed on a surface of the temperature probe. Alignment of the visual indicator with the physical reference corresponds to a desired force produced by the resilient device.
Abstract:
A temperature sensor assembly for use with a process vessel wall includes a base structure, a first temperature sensor, a second temperature sensor, and a processor. The base structure forms a contact area with an external surface of the process vessel wall. The first temperature sensor extends through the base structure to measure a temperature of the external surface of the process vessel wall. The second temperature sensor is at a second surface spaced from the first surface to measure a temperature of the second surface of the base structure. The processor is connected to the first and second temperature sensors, and adapted to determine an internal process vessel wall temperature value as a function of the measured temperature of the external surface of the process vessel wall, the measured temperature of the second surface of the base structure, base structure parameters, and process vessel wall parameters.
Abstract:
A magnetic flowmeter includes a pipe with a non-conductive PTFE liner, magnetic coils to generate a magnetic field, and electrodes in contact with the fluid on opposite sides of the pipe. The electrodes comprise conductive PTFE patch electrodes bonded to the non-conductive PTFE liner so that an inner end of each patch electrode is exposed to fluid flowing through the interior pipe and an outer end of each patch electrode is aligned with an electrode hole in the pipe.