Abstract:
An electronics package includes a platform and a board mounted to the platform, the board having electronics mounted thereon. A feedthrough pin passes through and is hermetically sealed to a feedthrough body and is wire bonded to the board. A cover is bonded to and surrounds the exterior surface of the feedthrough body to produce a hermetically sealed chamber that houses the platform and the board.
Abstract:
A pressure sensor capsule includes a capsule body, an isolator, a pressure sensor, and a fluid fill pathway. The capsule body defines a process chamber. The isolator is supported by the capsule body and is exposed to the process chamber. The pressure sensor produces a sensor output that is indicative of a pressure within an interior chamber, which is isolated from the process chamber by the isolator. The fluid fill pathway extends from the process chamber to the interior chamber.
Abstract:
A pressure sensor assembly for use in sensing a pressure of a process fluid in a high temperature environment includes an elongate sensor housing configured to be exposed to the process fluid and having a cavity formed therein. A pressure sensor is positioned in the cavity of the elongate sensor housing. The pressure sensor has at least one diaphragm that deflects in response to applied pressure and includes an electrical component having an electrical property which changes as a function of deflection of the at least one diaphragm which is indicative of applied pressure. A flexible membrane in contact with the at least one diaphragm is disposed to seal at least a portion of the cavity of the sensor housing from the process fluid and flexes in response to pressure applied by the process fluid to thereby cause deflection of the at least one diaphragm.
Abstract:
A multivariable process fluid transmitter module includes a base having a pair of recesses. A pair of pedestals is provided with each pedestal being disposed in a respective recess and being coupled to a respective isolation diaphragm. At least one line pressure assembly is mounted proximate one of the pedestals. The at least one line pressure assembly couples a respective isolation diaphragm to a line pressure sensor. A differential pressure sensor has a sensing diaphragm fluidically coupled to the isolation diaphragms by a fill fluid. At least one additional sensor is disposed to sense a temperature of a process fluid. Circuitry is coupled to the line pressure sensor, the differential pressure sensor, and the at least one additional sensor to measure an electrical characteristic of each of the line pressure sensor, the differential pressure sensor, and the at least one additional sensor. The circuitry is configured to provide an indication of fluid flow based on the measured electrical characteristic of each of the line pressure sensor, the differential pressure sensor and the at least one additional sensor.
Abstract:
A pressure transmitter has a pressure sensor, an isolator diaphragm, and a fill tube. Interior passages in the pressure sensor module body are filled with isolator fluid and provide fluid connections. The isolator fluid couples pressure from the first isolator diaphragm assembly to the pressure sensor. A first crimp portion of the fill tube radially narrows into a substantially solid circular cylindrical cross section to form a first primary seal that is resistant to high pressure cycling.
Abstract:
A multivariable process fluid transmitter module includes a base having a pair of recesses. A pair of pedestals is provided with each pedestal being disposed in a respective recess and being coupled to a respective isolation diaphragm. At least one line pressure assembly is mounted proximate one of the pedestals. The at least one line pressure assembly couples a respective isolation diaphragm to a line pressure sensor. A differential pressure sensor has a sensing diaphragm fluidically coupled to the isolation diaphragms by a fill fluid. At least one additional sensor is disposed to sense a temperature of a process fluid. Circuitry is coupled to the line pressure sensor, the differential pressure sensor, and the at least one additional sensor to measure an electrical characteristic of each of the line pressure sensor, the differential pressure sensor, and the at least one additional sensor. The circuitry is configured to provide an indication of fluid flow based on the measured electrical characteristic of each of the line pressure sensor, the differential pressure sensor and the at least one additional sensor.
Abstract:
An electronics package includes a platform and a board mounted to the platform, the board having electronics mounted thereon. A feedthrough pin passes through and is hermetically sealed to a feedthrough body and is wire bonded to the board. A cover is bonded to and surrounds the exterior surface of the feedthrough body to produce a hermetically sealed chamber that houses the platform and the board.
Abstract:
A pressure sensor assembly for use in sensing a pressure of a process fluid in a high temperature environment includes an elongate sensor housing configured to be exposed to the process fluid and having a cavity formed therein. A pressure sensor is positioned in the cavity of the elongate sensor housing. The pressure sensor has at least one diaphragm that deflects in response to applied pressure and includes an electrical component having an electrical property which changes as a function of deflection of the at least one diaphragm which is indicative of applied pressure. A flexible membrane in contact with the at least one diaphragm is disposed to seal at least a portion of the cavity of the sensor housing from the process fluid and flexes in response to pressure applied by the process fluid to thereby cause deflection of the at least one diaphragm.
Abstract:
A process fluid pressure sensing system includes a process fluid pressure transmitter and a process manifold. The process fluid pressure transmitter has first and second pressure inlets and is configured to obtain a measurement relative to pressures applied at the first and second pressure inlets and provide a process variable output based on the measurement. The process manifold is operably coupled to a process fluid and has first and second pressure outlets. A first high-pressure coupling joins the first pressure outlet of the process manifold to the first pressure inlet of the process fluid pressure transmitter. A second high-pressure coupling joins the second pressure outlet of the process manifold to the second pressure inlet of the process fluid pressure transmitter. The first and second high-pressure fluid couplings are configured to accommodate misalignment between the respective pressure outlets and inlets.
Abstract:
A process fluid pressure sensing system includes a process fluid pressure transmitter and a process manifold. The process fluid pressure transmitter has first and second pressure inlets and is configured to obtain a measurement relative to pressures applied at the first and second pressure inlets and provide a process variable output based on the measurement. The process manifold is operably coupled to a process fluid and has first and second pressure outlets. A first high-pressure coupling joins the first pressure outlet of the process manifold to the first pressure inlet of the process fluid pressure transmitter. A second high-pressure coupling joins the second pressure outlet of the process manifold to the second pressure inlet of the process fluid pressure transmitter. The first and second high-pressure fluid couplings are configured to accommodate misalignment between the respective pressure outlets and inlets.