Abstract:
A system configured to handle reels for laying elongated members on the bed of a body of water, and in particular for transferring reels between an auxiliary structure and a laying vessel, has a bridge configured to connect the auxiliary structure and the laying vessel; and actuators configured to move a reel along and resting on the bridge.
Abstract:
A detection system to check the position of a pipeline in a bed of a body of water and extending along a predetermined route; the system comprising a device, which is configured to be moved in a moving direction and along the predetermined route and comprises a support, which mainly extends transversely to the moving direction, a quantity of acoustic wave sources, which are mounted on the support and are configured to transmit acoustic waves through the body of water and the bed of the body of water, and a quantity of acoustic wave receivers, which are located along the support and are configured to receive reflected acoustic waves and emit reception signals related to the reflected acoustic waves; and a processing unit comprising an acquisition unit, which is configured to receive, from the outside, at least one datum selected within a group of known or expected data comprising: the known value of the cross-section of the pipeline, an expected value of the trenching height of the pipeline, the known shape of the pipeline, the expected bathymetric profile of the bed of the body of water, and an expected value of the position of the pipeline; the processing unit being configured to calculate a parameter related to the position of the pipeline in the bed of the body of water on the basis of the reception signals and of said at least one datum selected within the group of data.
Abstract:
A plant for recovering metals and/or metal oxides from industrial process waste, in particular oil product refining waste, comprises a furnace; a feed line connected to a main inlet of the furnace and configured to feed the furnace with a solid waste containing metals, in particular in oxide form; an outlet line, connected to a solid phase outlet of the furnace and configured to draw a metal-enriched solid phase out of the furnace; the furnace is a belt conveyor furnace having a belt conveyor closed in a loop with a substantially horizontal configuration and having a top face, which receives the waste to treat and conveys it between two longitudinal opposite ends of the belt conveyor furnace respectively provided with the main inlet and the solid phase outlet.
Abstract:
A connecting device for supporting an apparatus configured to couple to a pipeline and having a coupling mechanism, which has a first portion configured to couple integrally to the apparatus, and a second portion, configured to be connected to a hoisting device, and selectively releasable from the first portion in a designated or given direction as a function of the relative position of, and the force exchanged between, the apparatus and the hoisting device.
Abstract:
The present invention relates to a method for contemporaneously recovering ammonia and carbon dioxide from an aqueous solution thereof, possibly comprising their condensates, in a synthesis process of urea, characterized in that it comprises a hydrophobic microporous membrane distillation phase of an aqueous solution comprising ammonia, carbon dioxide and their saline compounds or condensates, said distillation being carried out at a temperature ranging from 50 to 250° C. and a pressure ranging from 50 KPa to 20 MPa absolute, with the formation of a residual aqueous solution, possibly comprising urea, and a gaseous permeate stream, comprising ammonia, carbon dioxide and water. The present invention also relates to an apparatus for effecting the above method and a production process of urea which comprises the above method.
Abstract:
A method of joining a tubular member and a pipeline configured to convey corrosive products comprises preparing a tubular member with an inner seat inserting the end of a pipeline inside the inner seat; inserting a sleeve of corrosion-resistant material inside the end of the pipeline; inserting an expandable mandrel inside the sleeve; and expanding the expandable mandrel to join the end of the pipeline and the tubular member, and seal the sleeve and the pipeline to protect parts of the pipeline, sensitive to corrosive products, via the sleeve.
Abstract:
A digging machine configured to bury a continuous elongated member in the bed of a body of water has a frame extending along a longitudinal axis; a guide assembly fitted to the frame to move crosswise to the longitudinal axis, and configured to engage and move along the continuous elongated member; and a control device configured to adjust the position of the guide assembly with respect to the frame and the continuous elongated member according to the conformation of the continuous elongated member.
Abstract:
A method of securing a pipeline to the bed of a body of water includes moving an underwater vehicle selectively, on the bed of the body of water, along the pipeline; transporting a plurality of fastening devices on the underwater vehicle; and driving each fastening device partly into the bed of the body of water, close to the pipeline, by a handling device mounted on the underwater vehicle, to confine the pipeline between the bed of the body of water and the fastening device.
Abstract:
A module, configured to generate electric power inside a pipeline, in particular as the pipeline is being laid on the bed of a body of water, has a turbine configured to intercept an airflow fed in a travelling direction; and a rotating electric machine connected to the turbine, surrounding the turbine, and configured to produce electric power.
Abstract:
A heat-delivery apparatus (12) heats a heat-shrinkable sleeve (10) on a pipe (2). The heat-delivery apparatus (12) includes one or more heater elements (20) which define an interior heating surface that surrounds the sleeve (10). An air space is thus defined between the exterior of the sleeve (10) and the interior heating surface. The flow of air, that would otherwise be generated by the step of applying heat, within said air space is controlled or restricted for example by means of fins (50, 50s, 60) that control or restrict the airflow, fully or partially sealing the air space with one or more sealing members (70), or fans (80) that generate an opposing airflow (82).