Abstract:
An illumination arrangement operable to provide at least a first pair of radiation beams is disclosed. The illumination arrangement comprises a first beam path for providing a first beam of the first pair of radiation beams, the first beam path comprising a first optical fiber and a second beam path for providing a second beam of the first pair of radiation beams, the second beam path comprising a second optical fiber. The at least one dispersion compensation arrangement is operable to minimize a wavelength dependent optical path length difference between the first beam path and second beam path, at least over a wavelength range of interest.
Abstract:
Methods and apparatus for forming a patterned layer of material are disclosed. In one arrangement, a deposition-process material is provided in gaseous form. A layer of the deposition-process material is formed on the substrate by causing condensation or deposition of the gaseous deposition-process material. A selected portion of the layer of deposition-process material is irradiated to modify the deposition-process material in the selected portion.
Abstract:
Methods and apparatus for forming a patterned layer of carbon are disclosed. In one arrangement, a selected portion of a surface of a solid structure is irradiated with extreme ultraviolet radiation in the presence of a carbon-containing precursor. The radiation interacts with the solid structure in the selected portion to cause formation of a layer of carbon in the selected portion from the carbon-containing precursor. The layer of carbon is formed in a pattern defined by the selected portion.
Abstract:
A metrology apparatus (302) includes a higher harmonic generation (HHG) radiation source for generating (310) EUV radiation. Operation of the HHG source is monitored using a wavefront sensor (420) which comprises an aperture array (424, 702) and an image detector (426). A grating (706) disperses the radiation passing through each aperture so that the image detector captures positions and intensities of higher diffraction orders for different spectral components and different locations across the beam. In this way, the wavefront sensor can be arranged to measure a wavefront tilt for multiple harmonics at each location in said array. In one embodiment, the apertures are divided into two subsets (A) and (B), the gratings (706) of each subset having a different direction of dispersion. The spectrally resolved wavefront information (430) is used in feedback control (432) to stabilize operation of the HGG source, and/or to improve accuracy of metrology results.
Abstract:
A molecular manipulation system for investigating molecules,having a sample holder constructed to hold a sample comprising a plurality of molecules attached on one side to a surface in the sample holder and on another side attached to a microbead of a plurality of microbeads. The system having; an acoustic wave generator to generate an acoustic wave exerting a force on the microbeads in the sample; anda detector device to detect a response of the plurality of microbeads in the sample on the force exerted by the acoustic wave to investigate the molecules attached to the microbeads.
Abstract:
The present disclosure concerns a method and system for imaging a molecular strand (MS). The method comprises providing a sample volume (SV) comprising the strand (MS); providing an excitation beam (EB) having an excitation focus (EF) in the sample volume (SV); scanning the excitation focus (EF) in the sample volume (SV) along a one dimensional scanning line (SL); trapping an end of the strand (MS) in the sample volume (SV) and extending the strand (MS) along a one-dimensional trapping line (LL) parallel to the scanning line (SL); aligning the trapping line (LL) to coincide with the scanning line (SL) to have the scanning excitation focus (EF) coincide with the strand (MS); and recording the fluorescence response (FR) as a function of a plurality of distinct scanning positions (X0) of the excitation focus (EF) along the scanning line (SL).