Abstract:
The present invention, in broadest terms, includes a high pressure storage tank (10) comprising; (a) a tank having a fill opening (12) and a tank body (14) (that is, the portion of the tank's shape not including the valve opening) having inner walls defining an interior volume; and (b) a reinforcement matrix (18) disposed in said tank body (14) and attached to said inner walls, said reinforcement matrix (18) of a solid material and displacing no more than 33 % of said interior volume.
Abstract:
A multilayer structure, intended for the transportation, for the distribution or for the storage of a gas, in particular hydrogen, including, from the inside toward the outside, N composite reinforcing layer(s), deposited on one another, and being of a fibrous material in the form of continuous fibers which is impregnated by a composition of at least one semicrystalline thermoplastic polymer P1, the M.p. of which, as measured according to ISO 11357-3:2013, is greater than or equal to 150° C., or at least one amorphous thermoplastic polymer, the Tg of which is greater than 80° C., N being of from 1 to 2000 layers, and an outer sealing layer (1) cohesive with the outermost composite reinforcing layer (2) and including a composition of the at least one thermoplastic polymer P1, the composition of the outer sealing layer (1) resulting from at least the outermost composite reinforcing layer (2) cohesive with the sealing layer.
Abstract:
Disclosed are a processing apparatus, a corrugated plate, and a storage container. The processing apparatus includes a pair of slide plates, a pair of press plates, a shaping block, and a driving mechanism. The driving mechanism includes a slide plate driving portion linked to a shaping block driving portion, allowing the slide plate driving portion drives the pair of slide plates to approach each other at a first predetermined speed, the shaping block driving portion moves the shaping block downward at a second predetermined speed, and the first and second predetermined speed are specifically correlated with respect to a predetermined forming profile of an intersection portion. The processing apparatus of the present disclosure causes running speeds of various portions that move in different directions to extrude a blank plate to be specifically associated, so that the formation process is particularly applicable to a corrugated plate having the predetermined corrugated shape.
Abstract:
This invention describes a novel design and construction method for a Collapsible Cryogenic Storage Vessel that can be used for storing cryogenic liquids. The vessel provides the ability to be packed for transport in a compact state and erected at the point of use. The vessel can be used multiple times. The vessel's volume can also be adjusted during use to minimize or eliminate head space in the vessel.
Abstract:
A method for manufacturing a pressure vessel includes blow-molding a liner vessel in a shape having at least one bulkhead and two or more separated spaces and inserting a bulkhead reinforcing plate between the separated spaces. The method further includes forming an outer layer comprising a glass fiber or a glass fiber-carbon fiber composite material on the outside of the liner vessel and forming at least one anchor site configured to couple the bulkhead reinforcing plate to the outer layer.
Abstract:
A tank system for the cryogenic storage of hydrogen includes a tank structure with at least one hollow body for accommodating liquid hydrogen and at least one insulating means, which encloses the tank structure, for insulating the at least one hollow body. The tank structure has an exterior shape that is integrateable in a load-bearing primary structure of an aircraft. The tank structure is load bearing and is designed to at least partially absorb a load introduced into the primary structure. This makes it possible to achieve a particularly efficient design of an aircraft in which the fuselage of the aircraft is not divided into two parts by the hydrogen tank integrated therein, can be arranged near the center of gravity, and essentially does not increase the additional weight of the aircraft.
Abstract:
The present invention relates to a high-pressure tank made from fiber-reinforced plastic for, in particular, gaseous media, wherein, on its inner wall, the tank is equipped completely or partially with a substantially permeation-tight foil made of metal, wherein the metal has a high elastic range and a low thermal expansion coefficient, and the foil has a thickness of ≦0.5 mm. The invention also relates to a method for manufacturing tanks of this type.
Abstract:
A large volume natural gas storage tank comprises a plurality of rigid tubular walls each having opposing ends and an intermediate segment with a closed tubular cross-section, the plurality of rigid tubular walls arranged in a closely spaced relationship and interconnected at their ends, with each end of a given of the plurality of rigid tubular walls connected with respective ends of two others of the plurality of rigid tubular walls to define a corner of the storage tank, such that the interiors of the plurality of rigid tubular walls define an interior fluid storage chamber.
Abstract:
The present invention is directed, in part, to an apparatus and methods related to an expandable storage tank for compressed gas, the storage tank prepared from a puncture resistant, flexible fabric material in which the storage tank is expandable to a desired volume when inflated and when deflated. During periods of non-use the storage tank is retracted in a compact and folded manner to save space compared to when the tank is inflated. The storage tank is utilized by employing its use in conjunction with a traditional air compressor and can be configured with or without a rigid outer shell that expands in relation to the amount of compressed air transferred into the expandable storage tank.
Abstract:
A specialized vessel, of either ship or barge form, that is capable of holding a large number of ISO-sized intermodal LNG tanks and is configured to have the characteristics of both a tanker vessel (e.g., a gas carrier) and a container vessel. The intermodal LNG tanks connect to a piping system of the marine vessel and are thereby interconnected so as to allow the interconnected intermodal LNG tanks to behave as if they constitute a typical LNG vessel bulk liquid tank to facilitate efficient loading at a typical marine LNG terminal. The containerized intermodal LNG tanks are capable of discharging liquids to a marine terminal as if in a bulk mode, or of being disconnected from the common interconnection system to allow lift-off discharge of the intermodal LNG tanks at a typical cargo container port so that the intermodal LNG tanks can enter the existing intermodal transportation system.