Abstract:
A system to provide radiant energy of selectable spectral characteristic (e.g. a selectable color combination of light) uses an optical integrating cavity to combine energy of different wavelengths from different sources. Sources of radiant energy of different wavelengths, typically different-color LEDs, supply radiant energy into the interior of the cavity. The cavity has a diffusely reflective interior surface and an aperture for allowing emission of combined radiant energy. Control of the intensity of emission of the sources sets the amount of each wavelength of energy in the combined output and thus determines a spectral characteristic of the radiant energy output through the aperture. A variety of different elements may optically process the combined light output, such a deflector, a variable iris, a lens, a variable focusing lens system, a collimator, a holographic diffuser and combinations thereof. Such systems are useful in various luminous applications as well as various illumination applications.
Abstract:
The present invention is a cost-effective and compact micro-spectrometer for rapid detection of chemical compounds in the low concentration limit. The invention provides for significantly higher sensitivity compared to conventional spectroscopy techniques (continuous wave and Fourier transform methods) by placing the sample within a high Finesse etalon cavity. An Optical Spectrum Analyzer (OSA) built on either continuous wave (CW-SPEC), or Fourier Transform Absorption Spectroscopy (FT-SPEC) is used to monitor the spectrum from the etalon cavity/sample combination during tuning of the etalon cavity˜this information is then used to reconstruct the absorption spectrum.
Abstract:
An integrating sphere, and an integrating sphere-based reflectance colorimeter/spectrophotometer for the measurement of color and appearance, having multiple receivers capable of concurrently receiving optical radiation scattered/reflected from a diffusely illuminated sample surface, with the capability of multiple measurement modes (e.g., multiple specular component excluded (SCE), SCE and specular component included (SCI), multiple SCI), multiple areas-of-view for a given measurement mode, multiple viewing angles per measurement mode, and combinations thereof. An embodiment of the invention includes two SCI receivers and two SCE receivers, each disposed at an equal viewing angle relative to the sample surface. For each viewing mode, two sample areas-of-view are provided. The SCE receivers are opposite each other, such that the specular component of each SCE receiver is excluded by the port of the other SCE receiver. The receivers provide the collected light reflected from the sample to a detector which preferably is provided by multiple spectrometers or a single spectrometer having multichannel capability to preferably sense the light from each receiver in parallel.
Abstract:
In a detector for spectrometry attached to an integrating sphere, a plurality of detection elements having different spectral sensitivity characteristics is arranged side by side in the same plane on a base, and a side cover is provided such that the detection elements receive light. Thus, the measurement light is directly irradiated to the respective detection elements. Accordingly, the detector for spectrometry has a fast response speed and is excellent in the sensitivity characteristics in a wide wavelength region in the near-infrared area.