Abstract:
A distributed storage system implements high-speed data reconstitution processing while ensuring a high security level. Devices (63) in a device group (51) with security level “low” distributedly store fragmented data. When a process requesting device (60) belonging to a device group (50) with security level “high” instructs devices (62) belonging to the same group to reconstitute the data, the devices (62) collect and reconstitute part of the fragmented and stored data. After that, the process requesting device (60) collects the data partially reconstituted by the devices (62) and completely reconstitutes the data.
Abstract:
An image reading apparatus including a reading unit that reads a document as an object to be read in a main scanning direction; a conveyance unit that conveys one of the reading unit and the object to be read as an object to be conveyed in a sub-scanning direction; a detecting unit that detects a position of the object to be conveyed; a control unit that controls conveyance of the object to be conveyed, based on the position of the object to be conveyed and a preset target position trajectory; a specifying unit that specifies, based on the target position trajectory, the position of the object to be conveyed at a time when a period of invalidation or interruption of reading operation by the reading unit is started. The reading operation is invalidated or interrupted when a predetermined interruption condition is satisfied.
Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
An original is read by an original reading unit configured to read image data, at least one of the original reading unit and the original is driven by a driving motor in a sub-scan direction, and, when an amount of the image data stored by the image data storing unit becomes equal to or more than a predetermined amount, the rotational speed of the driving motor is reduced according to driving control data provided for each of current rotation angles of the driving motor for finally stopping the driving motor at a predetermined rotation angle, and a speed in a sub-scan direction at which the original reading unit reads the original is reduced. Then, main scan line data are thinned out from the image data according to thin-out data provided for each driving control data, and image data of the original are restored.
Abstract:
An image processing apparatus for converting image data between a raster format and a block format including an image data processor for providing the image data including a luminance component and at least one chrominance component in the raster format, at least two FIFO memories for storing corresponding image data components, a multiplexer for multiplexing the image data components from the at least two FIFO memories, a line buffer memory for storing outputs of the multiplexer linearly, and an image compressor for receiving the image data components in block format in sequence from the unified line buffer memory and compressing the received image data components. The image processing apparatus may also include an address generator for generating a common read/write address for the line buffer memory; and an image compressor for receiving image data of a v*h block unit from the line memory and compressing the received image data, where when the image data of v lines are read out from the line memory in a block scan order referring to the common read/write address, next image data of v lines are written into the single line memory with reference to the same common read/write address.
Abstract:
A distributed storage system implements high-speed data reconstitution processing while ensuring a high security level. Devices (63) in a device group (51) with security level “low” distributedly store fragmented data. When a process requesting device (60) belonging to a device group (50) with security level “high” instructs devices (62) belonging to the same group to reconstitute the data, the devices (62) collect and reconstitute part of the fragmented and stored data. After that, the process requesting device (60) collects the data partially reconstituted by the devices (62) and completely reconstitutes the data.
Abstract:
In an image processing method and apparatus for decoding and displaying input encoded data, the upper limit value of the data size to be stored in a memory that stores fragmented encoded data which form image data is set. It is checked based on the data size already stored in that memory, the upper limit value, and the data size of the input encoded data, if that input encoded data can be stored in the memory. If it is determined that the input encoded data cannot be stored in the memory, a region to be deleted in the image data of the data stored in the memory is determined. Data included in the determined region to be deleted is deleted for each fragmented data as a unit. If it is determined that the input encoded data can be stored in the memory, or after the data is deleted, the input encoded data is stored in the memory.
Abstract:
A device and method for providing real time compensation for packet loss in the transmission of facsimile data over packet networks to avoid the generation of page loss data and the termination of facsimile transmission. Facsimile devices have a low tolerance for interruptions in transmission. Packet networks commonly have a transmission interruption rate above the tolerance of facsimile equipment. In order to compensate for transmission interruption, the present invention teaches the buffering of facsimile data by scan line at the receiving end, the evaluation of buffered scan lines for packet loss and the discarding of scan lines having packet loss to conceal the packet loss from the receiving facsimile equipment to avoid detection of page errors by the receiving facsimile equipment which could cause loss of facsimile transmission. Discarding damaged scan lines instead of repair or replacement saves computational time and storage capacity, allowing for real-time compensation to provide for optimal transmission.
Abstract:
An image reading apparatus prevents degradation of image quality and a delay in the image reading time which are caused by interruption of reading of image data. A speed at which a host computer reads image data from an image reading apparatus and temporarily stores it therein is examined. If the resulting speed is lower than a reference value which has been set so that an operation to avoid an overflow of a buffer RAM in the image reading apparatus may not be caused, the sub-scanning speed of the image reading apparatus is set lower, and the image is read at the lower speed.
Abstract:
The present invention generally relates to a digital scanner for scanning images. More specifically, the present invention is directed to a method and apparatus for quickly processing and storing digital data in memory.