Abstract:
A biosensor with multi-channel A/D conversion and a method thereof are provided. The present biosensor includes a chip generating a time-dependent analog signal in response to a content of a specific component of a specimen provided thereon, a multi-channel A/D converter, and a microprocessor. The multi-channel A/D converter has multiple channels simultaneously receiving the time-dependent analog signal in each sampling interval to convert the time-dependent analog signal to a set of digital signals. The microprocessor receives the sets of digital signals in a period of sampling time and determines the content of the specific component based on the sets of digital signals. The present biosensor provides a multi-channel A/D conversion for the time-dependent analog signal to improve the resolution of the determination of the content of the specific component.
Abstract:
An operating method for a double-sided scanner is provided. A light source of one particular color inside a first group of light sources and a light source of a different color (or the same color) inside a second group of light source are lit to scan the front and back surface of a scan document. Optical signals from the front and back surface of the scan document are received and converted into analogue electrical signals. Thereafter, the analogue electrical signals are converted into digital electrical signal. Finally, the digital electrical signals are output to a host computer. This invention utilizes two groups of light sources (for example, light-emitting diodes) to serve as light sources for the double-sided scanner. Because light-emitting diodes require no warm-up period and is quick to switch, double-sided scanning is simplified.
Abstract:
A chip with measuring reliability and a method thereof are provided. The present invention serially connects a resistor having a resistance equal to or a little more than a maximum resistance of the chip itself to the resistor Rs of the chip so as to compensate the resistance differences among chips. A noise to signal (N/S) ratio of the chip is decreased, and a measuring reliability of the chip is improved.
Abstract:
The present invention provides a method for determining concentration of blood glucose by using the change in the rising time. The chemical reaction between the blood glucose and enzyme within the test strip to generate the analog source that used to determine the concentration of the blood glucose in the measuring meter. Thus, the rising curve can be obtained after the analog source is treated, such that the concentration of the blood glucose can be determined.
Abstract:
A method for determining a response of each probe zone on a test strip is provided. The present invention selects an average pixel value of each section of reference white respectively adjacent to the image of a target line to serve as a reference for determining a color response of the target line. When the color response is not less than a predetermined value, representing the target line has a positive response in response to a specific component of a tested solution tested by the test strip, and the specific component is present in the tested solution. The content of the specific component is proportional to the color response. When the color response is less than a predetermined value, representing the target line has a negative response in response to the specific component of the tested solution, and the specific component is absent in the tested solution.
Abstract:
An apparatus for monitoring specific substances in a fluid is provided. The apparatus of the present invention includes a housing, a tray, transmission means, a cylindrical transparent reservoir, a cylindrical holder having a plurality of hollow frames around the surrounding thereof each of which holding a test paper, and an optical scanning assembly. The tray is disposed in the housing and rotated by the transmission means. The cylindrical transparent reservoir contains a fluid sample to be analyzed and is held on the tray so as to synchronously rotate with the tray. The cylindrical holder is disposed in the cylindrical transparent reservoir. The optical scanning assembly is fastened beside the cylindrical transparent reservoir for capturing an image of a pattern displayed on each test paper in response to at least one specific substance in the fluid sample upon rotating the cylindrical transparent reservoir and converting the image into electronic signals. Thereby, the specific substances in the fluid sample are analyzed and identified via the image information captured from each test paper.
Abstract:
An image data sequencing method for a memory unit inside an optical scanning device. The image data sequencing method is particularly suitable for scanning a line of pixels with each pixel comprising a plurality of primary colors. The image data sequencing method involves scanning a line of pixels to obtain the data for a primary or secondary color. The pixels within the scan line are subdivided into groups. A storage space is reserved both before and after the address space inside the memory unit for holding the scanned primary or secondary color data so that all the primary or secondary color data constituting a pixel are in a fixed sequence next to each other inside the memory unit. When all the primary or secondary color data of pixels within a group are secured, the group of data is released from the memory unit.
Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
A control device and a method for controlling scanning speed of a scanner. The control device includes a decision device and a driving device. The decision device further includes an image buffer, an up-down counter and a comparator. The decision device receives the input image data and utilizes the up-down counter to compute data access volume inside the image buffer. The comparator decides whether to increase or decrease the scanning speed according to the data access volume and also outputs decision data to the driving device.
Abstract:
A method of reducing memory requirement in the compensation memory unit of a scanner. The method includes providing an even compensation data value and an odd compensation data value and averaging the two to produce an odd-even compensation data value. Only half as much memory space is required to hold the averaged odd-even compensation data values.